GIS with and
Part II: Working with Rasters¶
Set-up our environment as before¶
Let's import the packages we will use and set the paths for outputs.
# Let's import pandas and some other basic packages we will use
from __future__ import division
import pandas as pd
import numpy as np
import os, sys
# GIS packages
import geopandas as gpd
from geopandas.tools import overlay
from shapely.geometry import Polygon, Point
import georasters as gr
# Alias for Geopandas
gp = gpd
# Plotting
import matplotlib as mpl
import seaborn as sns
# Setup seaborn
sns.set()
# Mapping
import geoplot as gplt
import geoplot.crs as gcrs
import mapclassify as mc
import textwrap
%pylab --no-import-all
%matplotlib inline
# Functions for plotting
def center_wrap(text, cwidth=32, **kw):
'''Center Text (to be used in legend)'''
lines = text
#lines = textwrap.wrap(text, **kw)
return "\n".join(line.center(cwidth) for line in lines)
def MyChloropleth(mydf, myfile='', myvar='',
mylegend='',
k=5,
extent=[-180, -90, 180, 90],
bbox_to_anchor=(0.2, 0.5),
edgecolor='white', facecolor='lightgray',
scheme='FisherJenks', bins=None, pct=None,
legend_labels=None,
save=True,
percent=False,
cmap='Reds',
**kwargs):
# Chloropleth
# Color scheme
if scheme=='EqualInterval':
scheme = mc.EqualInterval(mydf[myvar], k=k)
elif scheme=='Quantiles':
scheme = mc.Quantiles(mydf[myvar], k=k)
elif scheme=='BoxPlot':
scheme = mc.BoxPlot(mydf[myvar], k=k)
elif scheme=='FisherJenks':
scheme = mc.FisherJenks(mydf[myvar], k=k)
elif scheme=='FisherJenksSampled':
scheme = mc.FisherJenksSampled(mydf[myvar], k=k)
elif scheme=='HeadTailBreaks':
scheme = mc.HeadTailBreaks(mydf[myvar], k=k)
elif scheme=='JenksCaspall':
scheme = mc.JenksCaspall(mydf[myvar], k=k)
elif scheme=='JenksCaspallForced':
scheme = mc.JenksCaspallForced(mydf[myvar], k=k)
elif scheme=='JenksCaspallSampled':
scheme = mc.JenksCaspallSampled(mydf[myvar], k=k)
elif scheme=='KClassifiers':
scheme = mc.KClassifiers(mydf[myvar], k=k)
elif scheme=='Percentiles':
scheme = mc.Percentiles(mydf[myvar], pct=pct)
elif scheme=='UserDefined':
scheme = mc.UserDefined(mydf[myvar], bins=bins)
if legend_labels is None:
# Format legend
upper_bounds = scheme.bins
# get and format all bounds
bounds = []
for index, upper_bound in enumerate(upper_bounds):
if index == 0:
lower_bound = mydf[myvar].min()
else:
lower_bound = upper_bounds[index-1]
# format the numerical legend here
if percent:
bound = f'{lower_bound:.0%} - {upper_bound:.0%}'
else:
bound = f'{float(lower_bound):,.0f} - {float(upper_bound):,.0f}'
bounds.append(bound)
legend_labels = bounds
#Plot
ax = gplt.choropleth(
mydf, hue=myvar, projection=gcrs.PlateCarree(central_longitude=0.0, globe=None),
edgecolor='white', linewidth=1,
cmap=cmap, legend=True,
scheme=scheme,
legend_kwargs={'bbox_to_anchor': bbox_to_anchor,
'frameon': True,
'title':mylegend,
},
legend_labels = legend_labels,
figsize=(24, 16),
rasterized=True,
)
gplt.polyplot(
countries, projection=gcrs.PlateCarree(central_longitude=0.0, globe=None),
edgecolor=edgecolor, facecolor=facecolor,
ax=ax,
rasterized=True,
extent=extent,
)
if save:
plt.savefig(pathgraphs + myfile + '_' + myvar +'.pdf', dpi=300, bbox_inches='tight')
plt.savefig(pathgraphs + myfile + '_' + myvar +'.png', dpi=300, bbox_inches='tight')
pass
# Paths
pathout = './data/'
if not os.path.exists(pathout):
os.mkdir(pathout)
pathgraphs = './graphs/'
if not os.path.exists(pathgraphs):
os.mkdir(pathgraphs)
Initial Example -- Caloric Suitability Index¶
Let's download a raster with interesting data so we can visualize and analyze it. Caloric Suitability Index CSI provides estimates for the potential calories that can be produced in any location using various crops.
For rasters we can use georasters
or rasterio
or various other tools. georasters
is simple to use and has many functions that are useful to (social) scientists. It tries to do for rasters what geopandas
does for geometries. Although mostly limited to what I have needed, it is expanding slowly to incorporate other uses.
Next we will use it to download a raster in GeoTiff
format from the Caloric Suitability Index CSI website. Since the data is made available via Google Driive, we will also learn how to use GD's API to download data. Once we have the datra we will imprt it as a GeoRaster
, which is simply a masked numpy
array with associated geographical information. We can use many functions and properties of the GeoRaster
to analyze our data. Moreover, since it is based on numpy
's MaskedArray
object, any funtion that works on numpy
arrays can be used on a GeoRaster
.
Download and Import Caloric Suitability Data (CSI)¶
Let's download the maximum pre- and post1500 CSI data, i.e. the maximum amount of calories that can be potentially preduced in a location with the crops available pre- and post-1500. See the CSI website or the associated papers (e.g., Galor and Özak (2015,2016) for the construction and properties of the data).
Download¶
# Import GD API python package
from google_drive_downloader import GoogleDriveDownloader as gdd
# Check whether files have been already downloaded
# Otherwise download
if os.path.exists(pathout + 'pre1500MaxCalories.tif')==False:
gdd.download_file_from_google_drive(file_id='0By-h7HPv1NhVR1BTX0V6eUdmTW8', resourcekey='0-7-oOUj8ldKwWSmnieI4oog', dest_path=pathout+'pre1500MaxCalories.tif')
if os.path.exists(pathout + 'post1500MaxCalories.tif')==False:
gdd.download_file_from_google_drive(file_id='0By-h7HPv1NhVamdlWEtSSlpKOTA', resourcekey='0-nWBun0NiYSnYDCH_N2tr-w', dest_path=pathout+'post1500MaxCalories.tif')
Import Rasters¶
pre1500 = gr.from_file(pathout + 'pre1500MaxCalories.tif')
post1500 = gr.from_file(pathout + 'post1500MaxCalories.tif')
Plot Rasters¶
We can plot this data easily using georasters
.
pre1500.plot()
Not very nice looking, but provides the basic information we may want. Of course we can improve using a few extra commands. Let's start by choosing a colormap and also normalizing the data. You can choose among the many colormaps provided by matplotlib
.
myraster = pre1500
cmap = plt.cm.YlGn
norm = mpl.colors.Normalize(vmin=myraster.min(), vmax=myraster.max())
fig = plt.figure(figsize=(15,10), dpi=300, facecolor='w', edgecolor='k')
plt.matshow(pre1500.raster, cmap=cmap, norm=norm, rasterized=True)
plt.xticks([])
plt.yticks([])
plt.show()
Let's add a colorbar and improve the figure a bit. Then expoprt it for using in our slides or paper.
myraster = pre1500
cmap = plt.cm.YlOrRd
norm = mpl.colors.Normalize(vmin=myraster.min(), vmax=myraster.max())
ax = myraster.plot(figsize=(15,10), cmap=cmap, norm=norm, rasterized=True)
plt.xticks([])
plt.yticks([])
plt.title('')
ax = plt.gca()
ax.set_aspect(1)
# create axes instance for colorbar on bottom.
ax = plt.gca()
pos = ax.get_position()
l, b, w, h = pos.bounds
cax = plt.axes([l+.3, b+0.03, .3, 0.01])
# draw colorbar on bottom.
cb = mpl.colorbar.ColorbarBase(cax, cmap=cmap, norm=norm, spacing='proportional', orientation='horizontal')
cax.set_title('Maximum Calories Pre-1500')
plt.savefig(pathgraphs + 'pre1500MaxCalories.pdf', dpi=150, bbox_inches='tight')
plt.show()
myraster = post1500
cmap = plt.cm.YlOrRd
norm = mpl.colors.Normalize(vmin=myraster.min(), vmax=myraster.max())
ax = myraster.plot(figsize=(15,10), cmap=cmap, norm=norm, rasterized=True)
plt.xticks([])
plt.yticks([])
plt.title('')
ax = plt.gca()
ax.set_aspect(1)
# create axes instance for colorbar on bottom.
ax = plt.gca()
pos = ax.get_position()
l, b, w, h = pos.bounds
cax = plt.axes([l+.3, b+0.03, .3, 0.01])
# draw colorbar on bottom.
cb = mpl.colorbar.ColorbarBase(cax, cmap=cmap, norm=norm, spacing='proportional', orientation='horizontal')
cax.set_title('Maximum Calories Post-1500')
plt.savefig(pathgraphs + 'post1500MaxCalories.pdf', dpi=150, bbox_inches='tight')
plt.show()
Not bad! Now let us add country borders so we can visualize a little bit better. We need to import a shapefile with the country borders. Let's use the same source as in the previous notebook.
import requests
import io
#headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36'}
headers = {'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2704.103 Safari/537.36', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8'}
url = 'https://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/cultural/ne_10m_admin_0_countries.zip'
r = requests.get(url, headers=headers)
countries = gp.read_file(io.BytesIO(r.content))
#countries = gpd.read_file('https://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/cultural/ne_10m_admin_0_countries.zip')
Let's remove Antarctica so we do not plot it.
countries = countries.query("CONTINENT!='Antarctica'")
myraster = pre1500
cmap = plt.cm.YlGn
norm = mpl.colors.Normalize(vmin=myraster.min(), vmax=myraster.max())
df3 = countries.copy()
df3.geometry = countries.boundary
df3['fake'] = 0
plt.figure(figsize=(15,10))
plt.xticks([])
plt.yticks([])
plt.title('')
ax =plt.gca()
ax.set_aspect(1)
img_extent = (myraster.xmin, myraster.xmax, myraster.ymin, myraster.ymax)
ax.imshow(myraster.raster, norm=norm, origin='upper',extent=img_extent, cmap=cmap, interpolation='bilinear', aspect=1)
df3.plot(ax=ax, color='black', edgecolor='k', linewidth=0.5, rasterized=True)
# create axes instance for colorbar on bottom.
ax = plt.gca()
pos = ax.get_position()
l, b, w, h = pos.bounds
cax = plt.axes([l+.3, b+0.05, .3, 0.01])
# draw colorbar on bottom.
cb = mpl.colorbar.ColorbarBase(cax, cmap=cmap, norm=norm, spacing='proportional', orientation='horizontal')
cax.set_title('Maximum Calories Pre-1500')
plt.savefig(pathgraphs + 'pre1500MaxCaloriesBorders.pdf', dpi=150, bbox_inches='tight')
plt.show()
myraster = post1500
cmap = plt.cm.YlOrRd
norm = mpl.colors.Normalize(vmin=myraster.min(), vmax=myraster.max())
df3 = countries.copy()
df3.geometry = countries.boundary
df3['fake'] = 0
plt.figure(figsize=(15,10))
plt.xticks([])
plt.yticks([])
plt.title('')
ax =plt.gca()
ax.set_aspect(1)
img_extent = (myraster.xmin, myraster.xmax, myraster.ymin, myraster.ymax)
ax.imshow(myraster.raster, norm=norm, origin='upper',extent=img_extent, cmap=cmap, interpolation='bilinear', aspect=1)
df3.plot(ax=ax, color='black', edgecolor='k', linewidth=0.5, rasterized=True)
# create axes instance for colorbar on bottom.
ax = plt.gca()
pos = ax.get_position()
l, b, w, h = pos.bounds
cax = plt.axes([l+.3, b+0.1, .3, 0.01])
# draw colorbar on bottom.
cb = mpl.colorbar.ColorbarBase(cax, cmap=cmap, norm=norm, spacing='proportional', orientation='horizontal')
cax.set_title('Maximum Calories Post-1500')
plt.savefig(pathgraphs + 'post1500MaxCaloriesBorders.pdf', dpi=150, bbox_inches='tight')
plt.show()
Analyze some properties of these rasters¶
Let's start by looking at some properties of these rasters and of the data they hold.
The size of the rasters¶
print('The size of the pre-1500 raster is', pre1500.shape)
print('The size of the post-1500 raster is', post1500.shape)
The geographical information of each raster¶
This includes the range of latitude and longitude, the size of their cells, projection, etc.
print('The geographical properties of the pre-1500 raster are', pre1500.geot)
print('The minimum latitude is', pre1500.ymin, 'and the maximum latitude is', pre1500.ymax, 'for the pre-1500 raster.')
print('The minimum longitude is', pre1500.xmin, 'and the maximum longitude is', pre1500.xmax, 'for the pre-1500 raster.')
print('The cells of the raster are', np.abs(pre1500.y_cell_size), 'degrees north-south', 'and', np.abs(pre1500.x_cell_size), 'east-west.')
Basic statistics of underlying data¶
print('Average CSI in the world pre-1500 is', pre1500.mean())
print('Median CSI in the world pre-1500 is', pre1500.median())
print('Maximum CSI in the world pre-1500 is', pre1500.max())
print('Minimum CSI in the world pre-1500 is', pre1500.min())
print('Standard deviation of CSI in the world pre-1500 is', pre1500.std())
Exercise¶
Compute the same information for the post-1500 raster.
Basic computation on rasters¶
We can now perform various computation using our rasters. E.g., find the difefrence in CSI in each location due to the Columbian Exchange.
post1500-pre1500
So, why does it fail? In this case, basically because the rasters do not have the same size (see above). More generally, it could be that the rasters do not have the same geographical settings. So, we must first make them amenable for each other. Luckily, georasters
has a functioon for that.
(pre1500n, post1500n) = gr.align_georasters(pre1500, post1500)
Let's see that now the new georasters
align correctly and so can be used for analysis.
print('The size of the pre-1500 raster is', pre1500n.shape)
print('The size of the post-1500 raster is', post1500n.shape)
print('The geographical properties of the new pre-1500 raster are', pre1500n.geot)
print('The minimum latitude is', pre1500n.ymin, 'and the maximum latitude is', pre1500n.ymax, 'for the new pre-1500 raster.')
print('The minimum longitude is', pre1500n.xmin, 'and the maximum longitude is', pre1500n.xmax, 'for the new pre-1500 raster.')
print('The cells of the new pre-1500 raster are', np.abs(pre1500n.y_cell_size), 'degrees north-south', 'and', np.abs(pre1500n.x_cell_size), 'east-west.')
print('The geographical properties of the new post-1500 raster are', post1500n.geot)
print('The minimum latitude is', post1500n.ymin, 'and the maximum latitude is', post1500n.ymax, 'for the new post-1500 raster.')
print('The minimum longitude is', post1500n.xmin, 'and the maximum longitude is', post1500n.xmax, 'for the new post-1500 raster.')
print('The cells of the new post-1500 raster are', np.abs(post1500n.y_cell_size), 'degrees north-south', 'and', np.abs(post1500n.x_cell_size), 'east-west.')
The new rasters have the same sizes and the same geographical settings. Yay! Now, let's compute the change in CSI due to the Columbian Exchange.
colex = post1500n - pre1500n
Let's find some stats on the change in CSI
print('Average change in CSI in the world pre-1500 is', colex.mean())
print('Median change in CSI in the world pre-1500 is', colex.median())
print('Maximum change in CSI in the world pre-1500 is', colex.max())
print('Minimum change in CSI in the world pre-1500 is', colex.min())
print('Standard deviation of change in CSI in the world pre-1500 is', colex.std())
Let's plot the change so we can see which regions in the world gained the most.
myraster = colex
cmap = plt.cm.YlGn
norm = mpl.colors.Normalize(vmin=myraster.min(), vmax=myraster.max())
df3 = countries.copy()
df3.geometry = countries.boundary
df3['fake'] = 0
plt.figure(figsize=(15,10))
plt.xticks([])
plt.yticks([])
plt.title('')
ax =plt.gca()
ax.set_aspect(1)
img_extent = (myraster.xmin, myraster.xmax, myraster.ymin, myraster.ymax)
ax.imshow(myraster.raster, norm=norm, origin='upper',extent=img_extent, cmap=cmap, interpolation='bilinear', aspect=1)
df3.plot(ax=ax, color='black', edgecolor='k', linewidth=0.5, rasterized=True)
# create axes instance for colorbar on bottom.
ax = plt.gca()
pos = ax.get_position()
l, b, w, h = pos.bounds
cax = plt.axes([l+.3, b+0.05, .3, 0.01])
# draw colorbar on bottom.
cb = mpl.colorbar.ColorbarBase(cax, cmap=cmap, norm=norm, spacing='proportional', orientation='horizontal')
cax.set_title('Difference in Calories Pre- vs Post-1500')
plt.savefig(pathgraphs + 'ColExMaxCaloriesBorders.pdf', dpi=150, bbox_inches='tight')
plt.show()
Let's remove the 0's so we can observe better where the changes are. For this we can use numpy
functions and operations.
colex0 = post1500n - pre1500n
colex0.raster.mask = colex0.raster.data<=0
print('Average change in CSI in the world pre-1500 is', colex0.mean())
print('Median change in CSI in the world pre-1500 is', colex0.median())
print('Maximum change in CSI in the world pre-1500 is', colex0.max())
print('Minimum change in CSI in the world pre-1500 is', colex0.min())
print('Standard deviation of change in CSI in the world pre-1500 is', colex0.std())
myraster = colex0
cmap = plt.cm.YlGn
norm = mpl.colors.Normalize(vmin=myraster.min(), vmax=myraster.max())
df3 = countries.copy()
df3.geometry = countries.boundary
df3['fake'] = 0
plt.figure(figsize=(15,10))
plt.xticks([])
plt.yticks([])
plt.title('')
ax =plt.gca()
ax.set_aspect(1)
img_extent = (myraster.xmin, myraster.xmax, myraster.ymin, myraster.ymax)
ax.imshow(myraster.raster, norm=norm, origin='upper',extent=img_extent, cmap=cmap, interpolation='bilinear', aspect=1)
df3.plot(ax=ax, color='black', edgecolor='k', linewidth=0.5, rasterized=True)
# create axes instance for colorbar on bottom.
ax = plt.gca()
pos = ax.get_position()
l, b, w, h = pos.bounds
cax = plt.axes([l+.3, b+0.05, .3, 0.01])
# draw colorbar on bottom.
cb = mpl.colorbar.ColorbarBase(cax, cmap=cmap, norm=norm, spacing='proportional', orientation='horizontal')
cax.set_title('Difference in Calories Pre- vs Post-1500')
plt.savefig(pathgraphs + 'ColEx0MaxCaloriesBorders.pdf', dpi=150, bbox_inches='tight')
plt.show()
Exercise¶
- Create CSI rasters for pre- and post-1500 that exclude 0's.
- Plot them.
- Compute the difference in CSI due to the Columbian Exchange.
pre1500n0 = pre1500n.copy()
post1500n0 = post1500n.copy()
pre1500n0.raster.mask = pre1500n0.raster.data<=0
post1500n0.raster.mask = post1500n0.raster.data<=0
myraster = pre1500n0
cmap = plt.cm.YlGn
norm = mpl.colors.Normalize(vmin=myraster.min(), vmax=myraster.max())
df3 = countries.copy()
df3.geometry = countries.boundary
df3['fake'] = 0
plt.figure(figsize=(15,10))
plt.xticks([])
plt.yticks([])
plt.title('')
ax =plt.gca()
ax.set_aspect(1)
img_extent = (myraster.xmin, myraster.xmax, myraster.ymin, myraster.ymax)
ax.imshow(myraster.raster, norm=norm, origin='upper',extent=img_extent, cmap=cmap, interpolation='bilinear', aspect=1)
df3.plot(ax=ax, color='black', edgecolor='k', linewidth=0.5, rasterized=True)
# create axes instance for colorbar on bottom.
ax = plt.gca()
pos = ax.get_position()
l, b, w, h = pos.bounds
cax = plt.axes([l+.3, b+0.05, .3, 0.01])
# draw colorbar on bottom.
cb = mpl.colorbar.ColorbarBase(cax, cmap=cmap, norm=norm, spacing='proportional', orientation='horizontal')
cax.set_title('Maximum Calories Pre-1500')
plt.savefig(pathgraphs + 'pre1500MaxCalories0Borders.pdf', dpi=150, bbox_inches='tight')
plt.show()
myraster = post1500n0
cmap = plt.cm.YlGn
norm = mpl.colors.Normalize(vmin=myraster.min(), vmax=myraster.max())
df3 = countries.copy()
df3.geometry = countries.boundary
df3['fake'] = 0
plt.figure(figsize=(15,10))
plt.xticks([])
plt.yticks([])
plt.title('')
ax =plt.gca()
ax.set_aspect(1)
img_extent = (myraster.xmin, myraster.xmax, myraster.ymin, myraster.ymax)
ax.imshow(myraster.raster, norm=norm, origin='upper',extent=img_extent, cmap=cmap, interpolation='bilinear', aspect=1)
df3.plot(ax=ax, color='black', edgecolor='k', linewidth=0.5, rasterized=True)
# create axes instance for colorbar on bottom.
ax = plt.gca()
pos = ax.get_position()
l, b, w, h = pos.bounds
cax = plt.axes([l+.3, b+0.05, .3, 0.01])
# draw colorbar on bottom.
cb = mpl.colorbar.ColorbarBase(cax, cmap=cmap, norm=norm, spacing='proportional', orientation='horizontal')
cax.set_title('Maximum Calories Post-1500')
plt.savefig(pathgraphs + 'post1500MaxCalories0Borders.pdf', dpi=150, bbox_inches='tight')
plt.show()
Now, the Columbian Exchange
colexn0 = post1500n0 - pre1500n0
print('Average change in CSI in the world pre-1500 is', colexn0.mean())
print('Median change in CSI in the world pre-1500 is', colexn0.median())
print('Maximum change in CSI in the world pre-1500 is', colexn0.max())
print('Minimum change in CSI in the world pre-1500 is', colexn0.min())
print('Standard deviation of change in CSI in the world pre-1500 is', colexn0.std())
myraster = colexn0
cmap = plt.cm.YlGn
norm = mpl.colors.Normalize(vmin=myraster.min(), vmax=myraster.max())
df3 = countries.copy()
df3.geometry = countries.boundary
df3['fake'] = 0
plt.figure(figsize=(15,10))
plt.xticks([])
plt.yticks([])
plt.title('')
ax =plt.gca()
ax.set_aspect(1)
img_extent = (myraster.xmin, myraster.xmax, myraster.ymin, myraster.ymax)
ax.imshow(myraster.raster, norm=norm, origin='upper',extent=img_extent, cmap=cmap, interpolation='bilinear', aspect=1)
df3.plot(ax=ax, color='black', edgecolor='k', linewidth=0.5, rasterized=True)
# create axes instance for colorbar on bottom.
ax = plt.gca()
pos = ax.get_position()
l, b, w, h = pos.bounds
cax = plt.axes([l+.3, b+0.05, .3, 0.01])
# draw colorbar on bottom.
cb = mpl.colorbar.ColorbarBase(cax, cmap=cmap, norm=norm, spacing='proportional', orientation='horizontal')
cax.set_title('Difference in Calories Pre- vs Post-1500')
plt.savefig(pathgraphs + 'ColExMaxCalories0Borders.pdf', dpi=150, bbox_inches='tight')
plt.show()
Some more analyses¶
- Let's plot the histogram of the data.
- Compare at the cell level the CSI in both periods.
- Plot CSI in both periods at the cell level
pre1500n.raster.flatten()
sns.set(rc={'figure.figsize':(11.7,8.27)})
#sns.reset_orig()
sns.set_context("talk")
# Plot
fig, ax = plt.subplots()
sns.kdeplot(pre1500n.raster.flatten(), ax=ax, shade=True, label='pre-1950', linewidth=2)
sns.kdeplot(post1500n.raster.flatten(), ax=ax, shade=True, label='post-1950', linewidth=2)
ax.set_xlabel('CSI in period')
ax.set_ylabel('Density of Cells')
ax.legend()
plt.savefig(pathgraphs + 'CSI-density-density.pdf', dpi=300, bbox_inches='tight')
'''
# Cumulative Distribution
# Very very slow
sns.set(rc={'figure.figsize':(11.7,8.27)})
#sns.reset_orig()
sns.set_context("talk")
# Plot
fig, ax = plt.subplots()
sns.kdeplot(pre1500n.raster.flatten(), ax=ax, shade=True, label='pre-1950', linewidth=2, cumulative=True)
sns.kdeplot(post1500n.raster.flatten(), ax=ax, shade=True, label='post-1950', linewidth=2, cumulative=True)
ax.set_xlabel('CSI in period')
ax.set_ylabel('Cumulative Density of Cells')
plt.savefig(pathgraphs + 'CSI-cum-density-density.pdf', dpi=300, bbox_inches='tight')
'''
Since working with the full dataset takes too long, let's use a subset of the data. This is also useful for other analyses.
Clipping rasters¶
Let's clip the rasters to include only the data from one country: Colombia.
col_pre = pre1500n.clip(countries.query('ISO_A3=="COL"'))
col_pre = col_pre[0]
col_pre.plot(cmap=cmap)
col_post = post1500n.clip(countries.query('ISO_A3=="COL"'))
col_post = col_post[0]
col_post.plot(cmap=cmap)
col_dif = col_post - col_pre
col_dif.plot(cmap=cmap)
Distribution of CSI pre- and post 1500 in Colombia¶
sns.set(rc={'figure.figsize':(11.7,8.27)})
#sns.reset_orig()
sns.set_context("talk")
# Plot
fig, ax = plt.subplots()
sns.kdeplot(col_pre.raster.flatten(), ax=ax, shade=True, label='pre-1950', linewidth=2)
sns.kdeplot(col_post.raster.flatten(), ax=ax, shade=True, label='post-1950', linewidth=2)
ax.set_xlabel('CSI in period')
ax.set_ylabel('Density of Cells')
ax.legend()
plt.savefig(pathgraphs + 'COL-CSI-density-density.pdf', dpi=300, bbox_inches='tight')
sns.set(rc={'figure.figsize':(11.7,8.27)})
#sns.reset_orig()
sns.set_context("talk")
# Plot
fig, ax = plt.subplots()
sns.kdeplot(col_pre.raster.flatten(), ax=ax, shade=True, label='pre-1950', linewidth=2, cumulative=True)
sns.kdeplot(col_post.raster.flatten(), ax=ax, shade=True, label='post-1950', linewidth=2, cumulative=True)
ax.set_xlabel('CSI in period')
ax.set_ylabel('Cumulative Density of Cells')
ax.legend(loc='upper left')
plt.savefig(pathgraphs + 'COL-CSI-cum-density-density.pdf', dpi=300, bbox_inches='tight')
Clearly, as expected, post-1500 CSI First Order Stochastically Dominates pre-1500 CSI.
Plot pre- vs post-1500¶
sns.set(rc={'figure.figsize':(11.7,8.27)})
#sns.reset_orig()
sns.set_context("talk")
# Plot
fig, ax = plt.subplots()
sns.scatterplot(x=col_pre.flatten(), y=col_post.flatten(), x_jitter=0.5)
ax.tick_params(axis = 'both', which = 'major')
ax.tick_params(axis = 'both', which = 'minor')
plt.plot([col_pre.min()-500, col_pre.max()+500], [col_pre.min()-500, col_pre.max()+500], color='r')
ax.set_xlabel('CSI pre-1500')
ax.set_ylabel('CSI post-1500')
plt.savefig(pathgraphs + 'COL-pre-postCSI.pdf', dpi=300, bbox_inches='tight')
Getting spatial statistics¶
In many analyses we want to get some spatial statistics for a region, i.e. the Maximum CSI in each country in the pre- and post-1500 periods. Again, this is easy to do with georasters
.
pre1500stats = pre1500n.stats(countries, add_stats={'median':np.ma.median, 'std':np.ma.std, 'max':np.ma.max, 'min':np.ma.min})
pre1500stats
The outcome is a pandas
dataframe which includes all the original information from the shapefile, as well as the spatial statistics for each geometry based on the georaster
. Additionally, it includes a new column with the clipped georaster, which can be useful for additional analyses. E.g., let's aggregate all countries in each continent to create a continent level raster.
Exercise¶
- Use the
pre1500stats
dataframe to plot the distribution of CSI pre-1500 across the world - Compute similar statistics for the post-1500 period and also for the changes in CSI
- Plot maps of the distribution of these across the world
# Select Kenya and plot its georaster
pre1500stats.query('ADM0_A3=="KEN"').apply(lambda x: x.GeoRaster.plot(cmap=cmap), axis=1)
Create union of all African countries' georasters
¶
africa_pre = gr.union(pre1500stats.query('CONTINENT=="Africa"').GeoRaster.values)
africa_pre.plot(cmap=cmap)
We can do the same for each continent and create a georaster for each
# Same for all continents
for cont in countries.CONTINENT.unique():
print(cont)
try:
cont2 = cont.replace(' ', '')
exec(cont2 + '_pre = gr.union(pre1500stats.query("CONTINENT==\'' + cont + '\'").GeoRaster.values)')
eval(cont2 + '_pre.plot(cmap=cmap)')
plt.show()
except:
print('Oops')
Or we can create a dataframe of georasters
where each row is a continent
continents_pre = pre1500stats.groupby('CONTINENT').GeoRaster.apply(lambda x: gr.union(x))
continents_pre