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Growth with Overlapping Generations Growth with Overlapping Generations

Growth with Overlapping Generations

In many situations, the assumption of a representative household

is not appropriate because
1 households do not have an infinite planning horizon
2 new households arrive (or are born) over time.

New economic interactions: decisions made by older

“generations” will affect the prices faced by younger “generations”.

Overlapping generations models
1 Capture potential interaction of different generations of individuals

in the marketplace;
2 Provide tractable alternative to infinite-horizon representative agent

models;
3 Some key implications different from neoclassical growth model;
4 Dynamics in some special cases quite similar to Solow model

rather than the neoclassical model;
5 Generate new insights about the role of national debt and Social

Security in the economy.
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Growth with Overlapping Generations Problems of Infinity

Problems of Infinity I

Static economy with countably infinite number of households,

i ∈ N

Countably infinite number of commodities, j ∈ N.

All households behave competitively (alternatively, there are M

households of each type, M is a large number).

Household i has preferences:

ui = c i
i + c i

i+1,

c i
j denotes the consumption of the j th type of commodity by

household i .

Endowment vector ω of the economy: each household has one

unit endowment of the commodity with the same index as its

index.

Choose the price of the first commodity as the numeraire, i.e.,

p0 = 1.
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Growth with Overlapping Generations Problems of Infinity

Problems of Infinity II

Proposition In the above-described economy, the price vector p̄ such

that p̄j = 1 for all j ∈ N is a competitive equilibrium price

vector and induces an equilibrium with no trade, denoted

by x̄ .

Proof:

At p̄, each household has income equal to 1.
Therefore, the budget constraint of household i can be written as

c i
i + c i

i+1 ≤ 1.

This implies that consuming own endowment is optimal for each
household,

Thus p̄ and no trade, x̄ , constitute a competitive equilibrium.

Ömer Özak (SMU) Economic Growth Macroeconomics II 7 / 122



Growth with Overlapping Generations Problems of Infinity

Problems of Infinity III

However, this competitive equilibrium is not Pareto optimal.

Consider alternative allocation, x̃ :

Household i = 0 consumes its own endowment and that of

household 1.
All other households, indexed i > 0, consume the endowment of

their neighboring household, i + 1.
All households with i > 0 are as well off as in the competitive

equilibrium (p̄, x̄).
Individual i = 0 is strictly better-off.

Proposition In the above-described economy, the competitive

equilibrium at (p̄, x̄) is not Pareto optimal.
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Growth with Overlapping Generations Problems of Infinity

Problems of Infinity IV

Source of the problem must be related to the infinite number of

commodities.

Extended version of the First Welfare Theorem covers infinite

number of commodities, but only assuming ∑
∞
j=0 p∗

j ωj < ∞

(written with the aggregate endowment ωj ).

Here the only endowment is the good, and thus p∗
j = 1 for all

j ∈ N, so that ∑
∞
j=0 p∗

j ωj = ∞ (why?).

This abstract economy is “isomorphic” to the baseline overlapping

generations model.

The Pareto suboptimality in this economy will be the source of

potential inefficiencies in overlapping generations model.
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Growth with Overlapping Generations Problems of Infinity

Problems of Infinity V

Second Welfare Theorem did not assume ∑
∞
j=0 p∗

j ωj < ∞.

Instead, it used convexity of preferences, consumption sets and

production possibilities sets.

This exchange economy has convex preferences and convex

consumption sets:

Pareto optima must be decentralizable by some redistribution of
endowments.

Proposition In the above-described economy, there exists a

reallocation of the endowment vector ω to ω̃, and an

associated competitive equilibrium (p̄, x̃) that is Pareto

optimal where x̃ is as described above, and p̄ is such that

p̄j = 1 for all j ∈ N.
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Growth with Overlapping Generations Problems of Infinity

Proof of Proposition

Consider the following reallocation of ω: endowment of household

i ≥ 1 is given to household i − 1.

At the new endowment vector ω̃, household i = 0 has one unit of

good j = 0 and one unit of good j = 1.

Other households i have one unit of good i + 1.

At the price vector p̄, household 0 has a budget set

c0
0 + c1

0 ≤ 2,

thus chooses c0
0 = c0

1 = 1.

All other households have budget sets given by

c i
i + c i

i+1 ≤ 1,

Thus it is optimal for each household i > 0 to consume one unit of

the good c i
i+1

Thus x̃ is a competitive equilibrium.
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The Baseline OLG Model Environment

The Baseline Overlapping Generations Model

Time is discrete and runs to infinity.

Each individual lives for two periods.

Individuals born at time t live for dates t and t + 1.

Assume a general (separable) utility function for individuals born

at date t ,

Ut = u (c1t ) + βu (c2t+1) , (1)

u : R+ → R satisfies the usual Assumptions on utility.

c1t : consumption of the individual born at t when young (at date t).

c2t+1: consumption when old (at date t + 1).

β ∈ (0,1) is the discount factor.
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The Baseline OLG Model Environment

Structure of population across time

timei i + 1 i + 2 i + 3 i + 4i − 5 i − 4 i − 3 i − 2 i − 1

generation i − 5

generation i − 4

generation i − 3

generation i − 2

generation i − 1

generation i
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The Baseline OLG Model Environment

Demographics, Preferences and Technology I

Exponential population growth,

Lt = (1 + n)t
L (0) . (2)

Production side same as before: competitive firms, constant

returns to scale aggregate production function, satisfying

Assumptions 1 and 2:

Yt = F (Kt ,Lt ) .

Factor markets are competitive.

Individuals can only work in the first period and supply one unit of

labor inelastically, earning wt .
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The Baseline OLG Model Environment

Demographics, Preferences and Technology II

Assume that δ = 1.

k ≡ K /L, f (k) ≡ F (k ,1), and the (gross) rate of return to saving,

which equals the rental rate of capital, is

1 + rt = Rt = f ′ (kt ) , (3)

As usual, the wage rate is

wt = f (kt )− kt f
′ (kt ) . (4)
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The Baseline OLG Model Consumption Decisions
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The Baseline OLG Model Consumption Decisions

Consumption Decisions I

Savings by an individual of generation t , st , is determined as a

solution to

max
c1t ,c2t+1,st

u (c1t ) + βu (c2t+1)

subject to

c1t + st ≤ wt

and

c2t+1 ≤ Rt+1st ,

Old individuals rent their savings of time t as capital to firms at

time t + 1, and receive gross rate of return Rt+1 = 1 + rt+1.

Second constraint incorporates notion that individuals only spend

money on their own end of life consumption (no altruism or

bequest motive).
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The Baseline OLG Model Consumption Decisions

Consumption Decisions II

No need to introduce st ≥ 0, since negative savings would violate

second-period budget constraint (given c2t+1 ≥ 0).

Since u (·) is strictly increasing, both constraints will hold as

equalities.

Thus first-order condition for a maximum can be written in the

familiar form of the consumption Euler equation,

u′ (c1t ) = βRt+1u′ (c2t+1) . (5)

Problem of each individual is strictly concave, so this Euler

equation is sufficient.

Solving for consumption and thus for savings,

st = s (wt ,Rt+1) , (6)
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The Baseline OLG Model Consumption Decisions

Consumption Decisions

From the FOC and the BC

u′(wt − st ) = βRt+1u′(Rt+1st )

which implicitly defines

st = s(wt ,Rt+1).

One can show that s : R
2
+ → R satisfies sw > 0, but sR ≷ 0.
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The Baseline OLG Model Consumption Decisions

Consumption Decisions III

Total savings in the economy will be equal to

St = stLt ,

Lt denotes the size of generation t , who are saving for time t + 1.

Since capital depreciates fully after use and all new savings are

invested in capital,

Kt+1 = Lts (wt ,Rt+1) . (7)
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The Baseline OLG Model Equilibrium
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The Baseline OLG Model Equilibrium

Equilibrium I

Definition A competitive equilibrium can be represented by a

sequence of aggregate capital stocks, individual

consumption and factor prices,

{Kt , c1t , c2t ,Rt ,wt}
∞
t=0, such that the factor price

sequence {Rt ,wt}
∞
t=0 is given by (3) and (4), individual

consumption decisions {c1t , c2t}
∞
t=0 are given by (5) and

(6), and the aggregate capital stock, {Kt}
∞
t=0, evolves

according to (7).

Steady-state equilibrium defined as usual: an equilibrium in which

k ≡ K /L is constant.

To characterize the equilibrium, divide (7) by Lt+1 = (1 + n) Lt ,

kt+1 =
s (wt ,Rt+1)

1 + n
.
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The Baseline OLG Model Equilibrium

Equilibrium II

Now substituting for Rt+1 and wt from (3) and (4),

kt+1 =
s
(

f (kt )− k (t) f ′ (kt ) , f ′ (kt+1)
)

1 + n
(8)

This is the fundamental law of motion of the overlapping

generations economy.

A steady state is given by a solution to this equation such that

kt+1 = kt = k∗, i.e.,

k∗ =
s
(

f (k∗)− k∗f ′ (k∗) , f ′ (k∗)
)

1 + n
(9)

Since the savings function s (·, ·) can take any form, the difference

equation (8) can lead to quite complicated dynamics, and multiple

steady states are possible.
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The Baseline OLG Model Equilibrium

Possible Laws of Motion

kt

kt+1

kt+1 = kt

Ömer Özak (SMU) Economic Growth Macroeconomics II 26 / 122



The Baseline OLG Model Special Cases

Subsection 4

Special Cases
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The Baseline OLG Model Special Cases

Restrictions on Utility and Production Functions I

Suppose that the utility functions take the familiar CRRA form:

Ut =
c1−θ

1t − 1

1 − θ
+ β

(

c1−θ
2t+1 − 1

1 − θ

)

, (10)

where θ > 0 and β ∈ (0,1).

Technology is Cobb-Douglas,

f (k) = kα

The rest of the environment is as described above.

The CRRA utility simplifies the first-order condition for consumer

optimization,
c2t+1

c1t
= (βRt+1)

1/θ
.
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The Baseline OLG Model Special Cases

Restrictions on Utility and Production Functions II

This Euler equation can be alternatively expressed in terms of

savings as

s−θ
t βR1−θ

t+1 = (wt − st )
−θ, (11)

Gives the following equation for the saving rate:

st =
wt

ψt+1
, (12)

where

ψt+1 ≡ [1 + β−1/θR
−(1−θ)/θ
t+1 ] > 1,

Ensures that savings are always less than earnings.
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The Baseline OLG Model Special Cases

Restrictions on Utility and Production Functions III

The impact of factor prices on savings is summarized by the

following and derivatives:

sw ≡
∂st

∂wt
=

1

ψt+1
∈ (0,1) ,

sR ≡
∂st

∂Rt+1
=

(

1 − θ

θ

)

(βRt+1)
−1/θ st

ψt+1
.

Since ψt+1 > 1, we also have that 0 < sw < 1.

Moreover, in this case sR < 0 if θ > 1, sR > 0 if θ < 1, and sR = 0

if θ = 1.

Reflects counteracting influences of income and substitution

effects.

Case of θ = 1 (log preferences) is of special importance, may

deserve to be called the canonical overlapping generations model.
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The Baseline OLG Model Special Cases

RRA coefficient, income and substitution effects I

θ > 1

Income Effect > Subst. Eff.

c1t

c2t+1

wt

Rt+1wt

b

c∗1t

c∗
2t+1

R ′
t+1wt

b

c∗1t

c∗
2t+1
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The Baseline OLG Model Special Cases

RRA coefficient, income and substitution effects I

θ < 1

Income Effect < Subst. Eff.

c1t

c2t+1

wt

Rt+1wt

b

c∗1t

c∗
2t+1

R ′
t+1wt

b

c∗1t

c∗
2t+1
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The Baseline OLG Model Special Cases

RRA coefficient, income and substitution effects I

θ = 1

Income Effect = Subst. Eff.

c1t

c2t+1

wt

Rt+1wt

b

c∗1t c∗1t

c∗
2t+1

R ′
t+1wt

b

c∗
2t+1
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The Baseline OLG Model Special Cases

Restrictions on Utility and Production Functions IV

Equation (8) implies

kt+1 =
st

(1 + n)
(13)

=
wt

(1 + n)ψt+1
,

Or more explicitly,

kt+1 =
f (kt )− kt f

′ (kt )

(1 + n) [1 + β−1/θf ′ (kt+1)
−(1−θ)/θ]

(14)

The steady state then involves a solution to the following implicit

equation:

k∗ =
f (k∗)− k∗f ′ (k∗)

(1 + n) [1 + β−1/θf ′(k∗)−(1−θ)/θ]
.
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The Baseline OLG Model Special Cases

Restrictions on Utility and Production Functions V

Now using the Cobb-Douglas formula, steady state is the solution

to the equation

(1 + n)

[

1 + β−1/θ
(

α(k∗)α−1
)(θ−1)/θ

]

= (1 − α)(k∗)α−1. (15)

For simplicity, define R∗ ≡ α(k∗)α−1 as the marginal product of

capital in steady-state, in which case, (15) can be rewritten as

(1 + n)
[

1 + β−1/θ (R∗)(θ−1)/θ
]

=
1 − α

α
R∗. (16)

Steady-state value of R∗, and thus k∗, can now be determined

from equation (16), which always has a unique solution.
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The Baseline OLG Model Special Cases

Steady State

Notice that the steady state depends on θ (compare with Ramsey!)

Existence and uniqueness follow from figure

g(R)

R

1−α
α R∗

θ0 = 1

R∗
0 R∗

1

θ1 > 1

R∗
2

θ2 < 1
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The Baseline OLG Model Special Cases

RRA coefficient, steady state and dynamics

To investigate the stability, substitute for the Cobb-Douglas

production function in (14)

kt+1 =
(1 − α) kα

t

(1 + n) [1 + β−1/θ
(

αkα−1
t+1

)−(1−θ)/θ
]

. (17)
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The Baseline OLG Model Special Cases

RRA coefficient, steady state and dynamics

kt

kt+1

θ = 1
2

θ = 2

b

k∗

k∗
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The Baseline OLG Model Special Cases

Stability

Using (17) we can define

kt =

[

1 + n

1 − α

(

kt+1 + β−1/θα(θ−1)/θk
(1−α)/θ+α)
t+1

)

]1/α

≡ Γ(kt+1),

then

dkt

dkt+1
=

1

α
Γ(kt+1)

1−α

[

1 + n

1− α

(

1 +

(

1 − α

θ
+ α

)

β−1/θα(θ−1)/θk
(1−α)/θ+α−1)
t+1

)]

and at the steady state k∗ = Γ(k∗), so

dkt

dkt+1

∣

∣

∣

∣

k ∗

=
1

α
k∗−α

[

1 + n

1 − α

(

k∗ +

(

1 − α

θ
+ α

)

β−1/θα(θ−1)/θk∗(1−α)/θ+α)
)]
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The Baseline OLG Model Special Cases

Stability

θ ≤ 1 =⇒ 1−α
θ + α ≥ 1 so that

dkt

dkt+1

∣

∣

∣

∣

k ∗

≥
1

α
k∗−αΓ(k∗)α =

1

α
=⇒

dkt+1

dkt

∣

∣

∣

∣

k ∗

≤ α

θ > 1 =⇒ 1−α
θ + α < 1 so that

dkt

dkt+1

∣

∣

∣

∣

k ∗

>
1

α
k∗−α

(

1 − α

θ
+ α

)

Γ(k∗)α =
1

α

(

1 − α

θ
+ α

)

=⇒

dkt+1

dkt

∣

∣

∣

∣

k ∗

≤
1

1−α
αθ + 1

< 1
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The Baseline OLG Model Special Cases

Restrictions on Utility and Production Functions VI

Proposition In the overlapping-generations model with two-period

lived households, Cobb-Douglas technology and CRRA

preferences, there exists a unique steady-state

equilibrium with the capital-labor ratio k∗ given by (15),

this steady-state equilibrium is globally stable for all

k0 > 0.

In this particular (well-behaved) case, equilibrium dynamics are

very similar to the basic Solow model

Figure shows that convergence to the unique steady-state

capital-labor ratio, k∗, is monotonic.
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Canonical OLG Model

Section 3

Canonical OLG Model
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Canonical OLG Model Canonical Model

Subsection 1

Canonical Model
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Canonical OLG Model Canonical Model

Canonical Model I

Even the model with CRRA utility and Cobb-Douglas production

function is relatively messy.

Many of the applications use log preferences (θ = 1).

Income and substitution effects exactly cancel each othe:

changes in the interest rate (and thus in the capital-labor ratio of

the economy) have no effect on the saving rate.

Structure of the equilibrium is essentially identical to the basic

Solow model.

Utility of the household and generation t is,

Ut = log c1t + β log c2t+1, (18)

β ∈ (0,1) (even though β ≥ 1 could be allowed).

Again f (k) = kα.
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Canonical OLG Model Canonical Model

Canonical Model II

Consumption Euler equation:

c2t+1

c1t
= βRt+1 =⇒ c1t =

1

1 + β
wt

Savings should satisfy the equation

st =
β

1 + β
wt , (19)

Constant saving rate, equal to β/ (1 + β), out of labor income for

each individual.
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Canonical OLG Model Canonical Model

Canonical Model III

Combining this with the capital accumulation equation (8),

kt+1 =
st

(1 + n)

=
βwt

(1 + n) (1 + β)

=
β (1 − α) kα

t

(1 + n) (1 + β)
,

Second line uses (19) and last uses that, given competitive factor

markets, wt = (1 − α) [kt ]
α
.

There exists a unique steady state with

k∗ =

[

β (1 − α)

(1 + n) (1 + β)

]
1

1−α

. (20)

Equilibrium dynamics are identical to those of the basic Solow

model and monotonically converge to k∗.
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Canonical OLG Model Canonical Model

Equilibrium dynamics in canonical OLG model

kt

kt+1

b

k∗

k∗

k ′
0

k0
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Canonical OLG Model Canonical Model

Canonical Model IV

Proposition In the canonical overlapping generations model with log

preferences and Cobb-Douglas technology, there exists a

unique steady state, with capital-labor ratio k∗ given by

(20). Starting with any k0 ∈ (0, k∗), equilibrium dynamics

are such that kt ↑ k∗, and starting with any k ′
0 > k∗,

equilibrium dynamics involve kt ↓ k∗.
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Overaccumulation and Policy

Section 4

Overaccumulation and Policy
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Overaccumulation and Policy Overaccumulation and Pareto Optimality

Subsection 1

Overaccumulation and Pareto Optimality
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Overaccumulation and Policy Overaccumulation and Pareto Optimality

Overaccumulation I

Compare the overlapping-generations equilibrium to the choice of

a social planner wishing to maximize a weighted average of all

generations’ utilities.

Suppose that the social planner maximizes

∞

∑
t=0

ξt Ut

ξt is the discount factor of the social planner, which reflects how

she values the utilities of different generations.
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Overaccumulation and Policy Overaccumulation and Pareto Optimality

Overaccumulation II

Substituting from (1), this implies:

∞

∑
t=0

ξt (u (c1t ) + βu (c2t+1))

subject to the resource constraint

F (Kt ,Lt ) = Kt+1 + Ltc1t + Lt−1c2t .

Dividing this by Lt and using (2),

f (kt ) = (1 + n) kt+1 + c1t +
c2t

1 + n
.
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Overaccumulation and Policy Overaccumulation and Pareto Optimality

Overaccumulation IIB

Assume ∑ ξt < ∞ (Why?)

Clearly, Assumption 6.1N-6.5N in the book hold and we can apply

our dynamic programming theorems...

V (t , kt ) = max
(c1t ,kt+1)

{ξtu(c1t)

+ ξt−1βu
(

(1 + n)f (kt )− (1 + n)2kt+1 − (1 + n)c1t

)

+ V (t + 1, kt+1)}
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Overaccumulation and Policy Overaccumulation and Pareto Optimality

Overaccumulation IIC

Euler equation implies

ξtu
′(c1t ) =βξt−1(1 + n)u′(c2t )

(1 + n)2βξt−1u′(c2t ) =Vk (t + 1, kt+1)

and the envelope theorem

Vk(t + 1, kt+1) =βξt (1 + n)f ′(kt+1)u
′(c2t+1)

which together generate

ξtu
′(c1t ) =βξt−1(1 + n)u′(c2t ) =

Vk (t + 1, kt+1)

1 + n

=βξt f
′(kt+1)u

′(c2t+1)

Transversality condition: limt→∞ k∗
t βt ξt−1f ′(kt )u′(c2t ) = 0.
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Overaccumulation and Policy Overaccumulation and Pareto Optimality

Overaccumulation III

Social planner’s maximization problem then implies the following

first-order necessary condition:

u′ (c1t) = βf ′ (kt+1) u′ (c2t+1) .

Since Rt+1 = f ′ (kt+1), this is identical to (5).

Not surprising: allocate consumption of a given individual in

exactly the same way as the individual himself would do.

No “market failures” in the over-time allocation of consumption at

given prices.

However, the allocations across generations may differ from the

competitive equilibrium: planner is giving different weights to

different generations

In particular, competitive equilibrium is Pareto suboptimal when

k∗
> kgold ,
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Overaccumulation IV

When k∗
> kgold , reducing savings can increase consumption for

every generation.

More specifically, note that in steady state

f (k∗)− (1 + n)k∗ = c∗
1 + (1 + n)−1

c∗
2

≡ c∗,

First line follows by national income accounting, and second

defines c∗ (aggregate per capita consumption).

Therefore
∂c∗

∂k∗
= f ′ (k∗)− (1 + n)

kgold is defined as

f ′
(

kgold

)

= 1 + n
(

= (n + g + δ)
)

.
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Overaccumulation V

Now if k∗
> kgold , then ∂c∗/∂k∗

< 0: reducing savings can

increase (total) consumption for everybody.

If this is the case, the economy is referred to as dynamically

inefficient—it involves overaccumulation.

Another way of expressing dynamic inefficiency is that

r ∗ < n,

Recall in infinite-horizon Ramsey economy, transversality

condition required that r > g + n.

Dynamic inefficiency arises because of the heterogeneity inherent

in the overlapping generations model, which removes the

transversality condition.

Suppose we start from steady state at time T with k∗
> kgold .
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Inefficiency: graphical analysis

c1

c2

c1∗

c2∗

w∗

R∗w∗

w̃

(1 + n)w̃

wG

(1 + n)wG

k∗
> kG ⇐⇒

f (k∗) > f (kG) ⇐⇒
c∗ + (1 + n)k∗

> cG + (1 +
n)kG ⇐⇒
c∗

< cG
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Overaccumulation VI

Consider the following variation: change next period’s capital

stock by −∆k , where ∆k > 0, and from then on, we immediately

move to a new steady state (clearly feasible).

This implies the following changes in consumption levels:

∆ct = (1 + n) ∆k > 0

∆ct = −
(

f ′ (k∗ − ∆k)− (1 + n)
)

∆k for all t > T

The first expression reflects the direct increase in consumption

due to the decrease in savings.

In addition, since k∗
> kgold , for small enough ∆k ,

f ′ (k∗ − ∆k)− (1 + n) < 0, thus ∆c (t) > 0 for all t ≥ T .

The increase in consumption for each generation can be allocated

equally during the two periods of their lives, thus necessarily

increasing the utility of all generations.
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Pareto Optimality and Suboptimality in the OLG Model

Proposition In the baseline overlapping-generations economy, the

competitive equilibrium is not necessarily Pareto optimal.

More specifically, whenever r ∗ < n and the economy is

dynamically inefficient, it is possible to reduce the capital

stock starting from the competitive steady state and

increase the consumption level of all generations.

Pareto inefficiency of the competitive equilibrium is intimately

linked with dynamic inefficiency.
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Interpretation

Intuition for dynamic inefficiency:

Individuals who live at time t face prices determined by the capital

stock with which they are working.
Capital stock is the outcome of actions taken by previous

generations.

Pecuniary externality from the actions of previous generations
affecting welfare of current generation.

Pecuniary externalities typically second-order and do not matter for

welfare.
But not when an infinite stream of newborn agents joining the

economy are affected.
It is possible to rearrange in a way that these pecuniary

externalities can be exploited.
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Further Intuition

Complementary intuition:

Dynamic inefficiency arises from overaccumulation.

Results from current young generation needs to save for old age.
However, the more they save, the lower is the rate of return and

may encourage to save even more.

Effect on future rate of return to capital is a pecuniary externality on
next generation

If alternative ways of providing consumption to individuals in old
age were introduced, overaccumulation could be ameliorated.
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Subsection 2

Role of Social Security

Ömer Özak (SMU) Economic Growth Macroeconomics II 63 / 122



Overaccumulation and Policy Role of Social Security

Role of Social Security in Capital Accumulation

Social Security as a way of dealing with overaccumulation

Fully-funded system: young make contributions to the Social

Security system and their contributions are paid back to them in

their old age.

Unfunded system or a pay-as-you-go: transfers from the young

directly go to the current old.

Pay-as-you-go (unfunded) Social Security discourages aggregate

savings.

With dynamic inefficiency, discouraging savings may lead to a

Pareto improvement.
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Subsection 3

Fully Funded Social Security
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Overaccumulation and Policy Fully Funded Social Security

Fully Funded Social Security I

Government at date t raises some amount dt from the young,

funds are invested in capital stock, and pays workers when old

Rt+1dt .

Thus individual maximization problem is,

max
c1t ,c2t+1,st

u (c1t ) + βu (c2t+1)

subject to

c1t + st + dt ≤ wt

and

c2t+1 ≤ Rt+1 (st + dt ) ,

for a given choice of dt by the government.

Notice that now the total amount invested in capital accumulation

is st + dt = (1 + n) kt+1.
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Fully Funded Social Security II

Given the solution when dt = 0 for all t , (c̃1t , c̃2t+1), (original

problem), agents choose to save st = wt − dt − c̃1t

No longer the case that individuals will always choose st > 0.

As long as st is free, whatever {dt}
∞
t=0, the competitive equilibrium

applies.

When st ≥ 0 is imposed as a constraint, competitive equilibrium

applies if given {dt}
∞
t=0, privately-optimal {st}

∞
t=0 is such that

st > 0 for all t .
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Fully Funded Social Security III

Proposition Consider a fully funded Social Security system in the

above-described environment whereby the government

collects dt from young individuals at date t .
1 Suppose that st ≥ 0 for all t . If given the feasible

sequence {dt}
∞
t=0 of Social Security payments, the

utility-maximizing sequence of savings {st}
∞
t=0 is

such that st > 0 for all t , then the set of competitive

equilibria without Social Security are the set of

competitive equilibria with Social Security.
2 Without the constraint st ≥ 0, given any feasible

sequence {dt}
∞
t=0 of Social Security payments, the

set of competitive equilibria without Social Security

are the set of competitive equilibria with Social

Security.

Moreover, even when there is the restriction that st ≥ 0, a funded

Social Security program cannot lead to the Pareto improvement.
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Subsection 4

Unfunded Social Security
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Unfunded Social Security I

Government collects dt from the young at time t and distributes to

the current old with per capita transfer bt = (1 + n) dt

Individual maximization problem becomes

max
c1t ,c2t+1,st

u (c1t ) + βu (c2t+1)

subject to

c1t + st + dt ≤ wt

and

c2t+1 ≤ Rt+1st + (1 + n) dt+1,

for a given feasible sequence of Social Security payment levels

{dt}
∞
t=0.

Rate of return on Social Security payments is n rather than

rt+1 = Rt+1 − 1, because unfunded Social Security is a pure

transfer system.
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Unfunded Social Security

Lifetime budget becomes

c1t +
c2t+1

Rt+1
+ dt −

1 + n

Rt+1
dt+1 = wt

so agent will be better off as long as

dt −
1 + n

Rt+1
dt+1 < 0 (21)

agent chooses st such that

u′(wt − st − dt) = βu′(Rt+1st + (1 + n)dt+1)

If dt = dt+1 = d , and agent can choose d , then st = 0 if

Rt+1 < (1 + n)!
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Unfunded Social Security II

Only st—rather than st plus dt as in the funded scheme—goes

into capital accumulation.

It is possible that st will change in order to compensate, but such

an offsetting change does not typically take place.

Thus unfunded Social Security reduces capital accumulation.

Discouraging capital accumulation can have negative

consequences for growth and welfare.

In fact, empirical evidence suggests that there are many societies

in which the level of capital accumulation is suboptimally low.

But here reducing aggregate savings may be good when the

economy exhibits dynamic inefficiency.
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Unfunded Social Security III

Proposition Consider the above-described overlapping generations

economy and suppose that the decentralized competitive

equilibrium is dynamically inefficient. Then there exists a

feasible sequence of unfunded Social Security payments

{dt}
∞
t=0 which will lead to a competitive equilibrium

starting from any date t that Pareto dominates the

competitive equilibrium without Social Security.

Similar to way in which the Pareto optimal allocation was

decentralized in the example economy above.

Social Security is transferring resources from future generations to

initial old generation.

But with no dynamic inefficiency, any transfer of resources (and

any unfunded Social Security program) would make some future

generation worse-off. (follows from (21))
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Section 5

OLG with Impure Altruism
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Subsection 1

Impure Altruism

Ömer Özak (SMU) Economic Growth Macroeconomics II 75 / 122



OLG with Impure Altruism Impure Altruism

Overlapping Generations with Impure Altruism I

Exact form of altruism within a family matters for whether the

representative household would provide a good approximation.

U(ct ,bt) =u(ct) + Ub(bt)

U(ct ,bt) =u(ct) + βV (bt + w)

Parents care about certain dimensions of the consumption vector

of their offspring instead of their total utility or “impure altruism.”

A particular type, “warm glow preferences”: parents derive utility

from their bequest.
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Overlapping Generations with Impure Altruism I

Production side given by the standard neoclassical production

function, satisfying Assumptions 1 and 2, f (k).

Economy populated by a continuum of individuals of measure 1.

Each individual lives for two periods, childhood and adulthood.

In second period of her life, each individual begets an offspring,

works and then her life comes to an end.

No consumption in childhood (or incorporated in the parent’s

consumption).
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Overlapping Generations with Impure Altruism II

No new households, so population is constant at 1.

Each individual supplies 1 unit of labor inelastically during

adulthood.

Preferences of individual (i , t), who reaches adulthood at time t ,

are

log (cit ) + β log (bit) , (22)

where cit denotes the consumption of this individual and bit is

bequest to her offspring.

Offspring starts the following period with the bequest, rents this

out as capital to firms, supplies labor, begets her own offspring,

and makes consumption and bequests decisions.

Capital fully depreciates after use.
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Overlapping Generations with Impure Altruism III

Maximization problem of a typical individual can be written as

max
cit ,bit

log (cit ) + β log (bit) , (23)

subject to

cit + bit ≤ yit ≡ wt + Rtbit−1, (24)

where yit denotes the income of this individual.

Equilibrium wage rate and rate of return on capital

wt = f (kt )− kt f
′ (kt ) (25)

Rt = f ′ (kt ) (26)

Capital-labor ratio at time t + 1 is:

kt+1 =
∫ 1

0
bitdi , (27)
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Overlapping Generations with Impure Altruism IV

Measure of workers is 1, so that the capital stock and capital-labor

ratio are identical.

Denote the distribution of consumption and bequests across

households at time t by [cit ]i∈[0,1] and [bit ]i∈[0,1].
Assume the economy starts with the distribution of wealth

(bequests) at time 0 given by [bi0]i∈[0,1], which satisfies
∫ 1

0
bi0di > 0.

Definition An equilibrium in this overlapping generations economy

with warm glow preferences is a sequence of

consumption and bequest levels for each household,
{

[cit ]i∈[0,1] , [bit ]i∈[0,1]

}∞

t=0
, that solve (23) subject to (24),

a sequence of capital-labor ratios, {kt}
∞
t=0, given by (27)

with some initial distribution of bequests [bi0]i∈[0,1], and

sequences of factor prices, {wt ,Rt}
∞
t=0, that satisfy (25)

and (26).
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Overlapping Generations with Impure Altruism V

Solution of (23) subject to (24) is straightforward because of the

log preferences,

bit =
β

1 + β
yit

=
β

1 + β
[wt + Rtbit−1] , (28)

for all i and t .

Bequest levels will follow non-trivial dynamics.

bit can alternatively be interpreted as “wealth” level: distribution of

wealth that will evolve endogenously.

This evolution will depend on factor prices.

To obtain factor prices, aggregate bequests to obtain the

capital-labor ratio of the economy via equation (27).
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Overlapping Generations with Impure Altruism VI

Integrating (28) across all individuals,

kt+1 =
∫ 1

0
bitdi

=
β

1 + β

∫ 1

0
[wt + Rtbit−1] di

=
β

1 + β
f (kt ) . (29)

The last equality follows from the fact that
∫ 1

0
bit−1di = kt and

because by Euler’s Theorem, wt + Rtkt = f (kt ).

Thus dynamics are straightforward and again closely resemble

Solow growth model.

Moreover dynamics do not depend on the distribution of bequests

or income across households.
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Overlapping Generations with Impure Altruism VII

Solving for the steady-state equilibrium capital-labor ratio from

(29),

k∗ =
β

1 + β
f (k∗) , (30)

Uniquely defined and strictly positive in view of Assumptions 1 and

2.

Moreover, equilibrium dynamics again involve monotonic

convergence to this unique steady state.

We know that kt → k∗, so the ultimate bequest dynamics are

given by steady-state factor prices.

Let these be denoted by w∗ = f (k∗)− k∗f ′ (k∗) and R∗ = f ′ (k∗).
Once the economy is in the neighborhood of the steady-state

capital-labor ratio, k∗,

bit =
β

1 + β
[w∗ + R∗bit−1] .
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Overlapping Generations with Impure Altruism VIII

When R∗
< (1 + β) /β, starting from any level bit will converge to

a unique bequest (wealth) level

b∗ =
βw∗

1 + β (1 − R∗)
. (31)

Moreover, it can be verified that R∗
< (1 + β) /β,

R∗ = f ′ (k∗)

<
f (k∗)

k∗

=
1 + β

β
,

Second line exploits the strict concavity of f (·) and the last line

uses the definition of k∗ from (30).
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Overlapping Generations with Impure Altruism IX

Proposition Consider the overlapping generations economy with

warm glow preferences described above. In this

economy, there exists a unique competitive equilibrium. In

this equilibrium the aggregate capital-labor ratio is given

by (29) and monotonically converges to the unique

steady-state capital-labor ratio k∗ given by (30). The

distribution of bequests and wealth ultimately converges

towards full equality, with each individual having a

bequest (wealth) level of b∗ given by (31) with

w∗ = f (k∗)− k∗f ′ (k∗) and R∗ = f ′ (k∗).
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Section 6

Overlapping Generations with Perpetual Youth
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Subsection 1

Perpetual Youth in Discrete time
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Overlapping Generations with Perpetual Youth Perpetual Youth in Discrete time

Perpetual Youth in Discrete time I

Production side given by the standard neoclassical production

function, satisfying Assumptions 1 and 2, f (k).

Individuals are finitely lived and they are not aware of when they

will die.

Each individual faces a constant probability of death equal to

v ∈ (0,1). This is a simplification, since likelihood of survival is

not constant.

This last assumption implies that individuals have an expected

lifespan of 1
v
< ∞ periods.

Expected lifetime of an individual in this model is:

Expected life = v + 2(1 − v)v + 3(1− v)2v + · · · =
1

v
(32)

This equation captures the fact that with probability v the

individual will have a total life of length 1, with probability (1 − v)v ,

she will have a life of length 2, and so on.
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Perpetual Youth in Discrete time II

Perpetual youth: even though each individual has a finite expected

life, all individuals who have survived up to a certain date have

exactly the same expectation of further life.

Each individual supplies 1 unit of labor inelastically each period

she is alive.

Expected utility of an individual with a pure discount factor β is

given by

∞

∑
t=0

(β(1 − v))t u(ct),

where u(·) is a standard instantaneous utility function satisfying

Assumption 3, with the additional normalization that u(0) = 0.
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Perpetual Youth in Discrete time III

Individual i ’s flow budget constraint is

ait+1 = (1 + rt )ait − cit + wt + zit (33)

where zit reflects transfers to the individual. Since individuals face

an uncertain time of death, there may be accidental bequests.

Government can collect and redistribute. However, this needs

ait ≥ 0 to avoid debts. An alternative is to introduce life insurance

or annuity markets. Assuming competitive life insurance firms,

their profits will be

π(a, t) = va − (1 − v)z(a).

With free entry, π(a, t) = 0, thus

z(at ) =
v

1 − v
at . (34)
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Perpetual Youth in Discrete time IV

Demographics: There is an exogenous natural force toward

decreasing population (v > 0). But there also new agents who are

born into a dynasty. The evolution of the total population is given

by

Lt+1 = (1 + n − v)Lt , (35)

with the initial value L0 = 1, and with n > v .

Pattern of demographics in this economy: at t > 0 there will be:

1-year-olds=nLt−1 = n(1 + n − v )t−1L0.
2-year-olds=nLt−2(1 − v ) = n(1 + n − v )t−2(1 − v )L0.

k-year-olds=nLt−k(1 − v )k−1 = n(1 + n − v )t−k(1 − v )k−1L0.

Ömer Özak (SMU) Economic Growth Macroeconomics II 91 / 122



Overlapping Generations with Perpetual Youth Perpetual Youth in Discrete time

Perpetual Youth in Discrete time V

Maximization problem of a typical individual of generation τ can

be written as

max
{ct |τ}

∞
t=0

∞

∑
t=0

(β(1 − v))tu(ct |τ), (36)

subject to

at+1|τ =

(

1 + rt +
v

1 − v

)

at |τ − ct |τ + wt (37)

Equilibrium wage rate and rate of return on capital

wt = f (kt )− kt f
′(kt ) (38)

Rt = f ′(kt ) (39)
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Perpetual Youth in Discrete time VI

Definition An equilibrium in this overlapping generations economy

with perpetual youth is a sequence of capital stocks,

wage rates, and rental rates of capital, {Kt ,wt ,Rt}∞
t=0,

and paths of consumption for each generation,

{ct |τ}
∞
t=0,τ≤t , such that each individual maximizes utility,

and the time path of factor prices, {wt ,Rt}∞
t=0, is such that

given the time paths of the capital stock and labor,

{Kt ,Lt}∞
t=0, all markets clear.
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Perpetual Youth in Discrete time VII

Solution of (36) subject to (37), using Bellman equation, and

assuming logarithmic utility function:

V (at |τ) = max
at+1|τ

log
[

ct |τ

]

+ β(1 − v)V (at+1|τ)

The Euler equation is:

ct+k |τ = [β(1 − v)]k σk
t ct |τ

where σk
t = ∏

k
j=1

(

1 + rt+j +
v

1−v

)

and the transversality condition

is

lim
t→∞

[β(1 − v)]k
at |τ

ct |τ
= 0
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Perpetual Youth in Discrete time VIII

Consider the individual born in period τ during period t has assets

at |τ, it is true that

∞

∑
k=0

ct+k |τ

σk
t

=
∞

∑
k=0

wt+k

σk
t

+ at |τ

where we use the No Ponzi condition given by limt→∞
at |τ

σt
0

= 0.

Using the Euler equation, we obtain

∞

∑
k=0

(β(1 − v))k ct |τ =
1

1 − β(1 − v)
ct |τ = (ωt + at |τ)

or

ct |τ =
(

1 − β(1 − v)
)

(ωt + at |τ)
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Perpetual Youth in Discrete time IX

Average consumption:

ct =
t

∑
τ=0

Lt |τ

Lt
ct |τ =

(

1 − β(1 − v)
)

(ωt + āt) (40)

where āt = ∑
t
τ=0

Lt |τ

Lt
at |τ.

Additionally, the average stock of capital is

Kt+1

Lt+1
≡ kt+1 =

t

∑
τ=0

Lt |τ

Lt+1
at |τ =

āt

1 + n − v

or

kt+1 =
f (kt )− ct + (1 − δ)kt

1 + n − v
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Perpetual Youth in Discrete time X

In a steady state, ct |τ = ct+1|τ i.e.

[

β(1 − v)

(

1 + r ∗ +
v

1 − v

)]

= 1

and using r ∗ = f ′(k∗)− δ, we get

f ′(k∗) =
1 − β(1 − v)

β(1 − v)
+ δ.

This equation implies that k∗ is unique.
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Perpetual Youth in Discrete time XI

Additionally, kt = kt+1 i.e.

k∗ =
f (k∗)− c∗ + (1 − δ)k∗

1 + n − v

which implies

c∗ = f (k∗)− (n + δ − v)k∗

Clearly Golden rule level in this setting requires

f ′(k∗
G) = n + δ − v .

So that the economy can be dynamically inefficient depending on

n − v R
1 − β(1 − v)

β(1 − v)
.

Also, we may conclude that k∗ is not necessarily equal to the

modified golden rule stock of capital level.
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Subsection 2

Perpetual Youth in Continuous time
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Perpetual Youth in Continuous time I

The solution in this version is a closed-form solution for aggregate

consumption and capital stock dynamics.

Poisson rate of death, v ∈ (0,∞). Time of death follows an

exponential distribution, g(t) = ve−vt . So that the probability the

agent dies before time t is
∫ t

0
ve−vsds = 1 − e−vt and the

probability she is alive is e−vt .
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Perpetual Youth in Continuous time II

Preferences: u(c(t | τ))) = log(c(t | τ)), where c(t | τ) is the

consumption of generation τ at moment t .

Expected utility of an individual is given by
∫ ∞

0
e−(ρ+v)(t−τ) log(c(t | τ))dt or

e(ρ+v)τ
∫ ∞

0
e−(ρ+v)t log(c(t | τ))dt , (41)

where ρ is the discount rate.

Demographic: As in the discrete time, assuming that n > v , the

evolution of the total population is given by

L̇(t) = (n − v)L(t). (42)

It is also assumed that n − v < ρ.

The number of individuals of the cohort born at time τ < t is

L(t | τ) = ne−v(t−τ)+(n−v)τ, (43)

where L(0) = 1.
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Perpetual Youth in Continuous time III

As in the discrete case, individual i ’s flow budget constraint is

ȧ(t | τ) = r(t)a(t | τ)− c(t | τ) + w(t) + z(a(t | τ)|t , τ), (44)

where again z(a(t | τ)|t , τ) reflects transfers to the individual.

Since individuals face an uncertain time of death, there may be

accidental bequests. Introduce a life insurance or annuity markets.

Assuming competitive life insurance firms, their profits will be

π(a(t | τ)|t , τ) = va(t | τ)− z(a(t | τ)|t , τ),

since the individual will die and leave his assets to the life

insurance company at the flow rate v . With free entry,

π(a(t | τ)|t , τ) = 0, thus

z(a(t | τ)|t , τ) = va(t | τ).
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Perpetual Youth in Continuous time IV

Maximization problem of a typical individual of generation τ can

be written as

max
c(t |τ)

∫ ∞

0
e−(ρ+v)t log(c(t | τ))dt , (45)

subject to

ȧ(t | τ) = (r(t) + v)a(t | τ)− c(t | τ) + w(t). (46)

Equilibrium wage rate and rate of return on capital

w (t) = f (k (t))− k (t) f ′ (k (t)) (47)

R (t) = f ′ (k (t)) (48)
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Perpetual Youth in Continuous time V

The law of motion of the capital-labor ratio is given by

k̇(t) = f (k(t))− (n − v + δ)k(t)− c(t) (49)

where

c(t) =

∫ t

−∞
c(t | τ)L(t | τ)dτ
∫ t

−∞
L(t | τ)dτ

=

∫ t

−∞
c(t | τ)L(t | τ)dτ

L(t)

recalling that L(t |τ) is the size of the cohort born at τ at time t ,

and the lower limit of the integral is set to −∞ to include all

cohorts, even those born in the distant past.
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Perpetual Youth in Continuous time VI

Definition An equilibrium in this overlapping generations economy

with perpetual youth is a sequence of capital stock, wage

rates, and rental rates of capital, {K (t),w(t),R(t)}∞
t=0,

and paths of consumption for each generation,

{c(t |τ)}∞
t=0,τ≤t , such that each individual maximizes

utility (45) subject to (46), and the time path of factor

prices, {w(t),R(t)}∞
t=0 given by (47) and (48), is such

that given the time path of capital stock and labor,

{K (t),L(t)}∞
t=0, all markets clear.

Ömer Özak (SMU) Economic Growth Macroeconomics II 105 / 122



Overlapping Generations with Perpetual Youth Perpetual Youth in Continuous time

Perpetual Youth in Continuous time VII

Solution of (45) subject to (46), using Hamiltonian:

H(·) = max
c(t |τ)

log [c(t | τ)] + µ(t | τ) ((r(t) + v)a(t | τ) + w(t)− c(t | τ

The first order conditions are

1

c(t | τ)
= µ(t | τ)

−µ̇(t | τ) + (ρ + v)µ(t | τ) = (r(t) + v)µ(t | τ)

ȧ(t | τ) = (r(t) + v)a(t | τ)− c(t | τ) + w(t).

From the first FOC,
ċ(t |τ)
c(t |τ) = − µ̇(t |τ)

µ(t |τ) .
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Perpetual Youth in Continuous time VIII

From the second FOC we have

−
µ̇(t | τ)

µ(t | τ)
= r(t)− ρ

µ(t | τ) = µ(τ|τ)e−(r̄(t,τ)−ρ)(t−τ)

where r̄(t , τ) ≡ 1
t−τ

∫ t

τ r(s)d(s).

The Euler equation is:

ċ(t | τ)

c(t | τ)
= r(t)− ρ

and the transversality condition is

lim
t→∞

e−(ρ+v)(t−τ)µ(t | τ)a(t | τ) = 0.
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Perpetual Youth in Continuous time IX

Using the transversality condition and combining with the solution

of µ(t | τ) we have

lim
t→∞

e−(ρ+v)tµ(τ|τ)e−(r̄(t,τ)−ρ)(t−τ)a(t | τ) = 0

lim
t→∞

e−(r̄(t,τ)+v)(t−τ)µ(τ|τ)a(t | τ) = 0

lim
t→∞

e−(r̄(t,τ)+v)(t−τ)a(t | τ) = 0

which is the NPC in this case.
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Perpetual Youth in Continuous time X

Integrating the FBC
∫ ∞

t
[ȧ(s|τ)− (r(s) + v)a(s|τ)] e−(r̄(s,t)+v)(s−t)ds =

[a(s|τ)e−(r̄(s,t)+v)(s−t)]∞t =

−a(t | τ) = ω(t)−
∫ ∞

t
c(s|τ)e−(r̄(s,t)+v)(s−t)ds

−a(t | τ) = ω(t)−
∫ ∞

t
c(t | τ)e−(ρ+v)(s−t)ds

−a(t | τ) = ω(t)− c(t | τ)

[

−
e−(ρ+v)(s−t)

ρ + v

]∞

t

−a(t | τ) = ω(t)− c(t | τ)
1

ρ + v
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Perpetual Youth in Continuous time XI

Thus,

c(t | τ) = (ρ + v)(ω(t) + a(t | τ)) (50)

where ω(t) =
∫ ∞

t
e−(r̄(s,t)+v)(s−t)w(s)ds

In the aggregate, a(t) = k(t) and a(t) =
∫ t

−∞

a(t |τ)L(t |τ)
L(t)

dτ, so

c(t) =

∫ t

−∞
c(t | τ)L(t | τ)dτ

L(t)

= (ρ + v)

∫ t

−∞
(ω(t) + a(t | τ))L(t | τ)dτ

L(t)

= (ρ + v)

[

ω(t) +

∫ t

−∞
a(t | τ)L(t | τ)dτ

L(t)

]

= (ρ + v)(ω(t) + a(t))

In the aggregate, ċ(t) = (ρ + v)(ω̇(t) + ȧ(t))
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Perpetual Youth in Continuous time XII

From FBC, ȧ(t | τ) = (r(t) + v)a(t | τ) + w(t)− c(t | τ), thus

ȧ(t) = (r(t) + v − n)a(t) + w(t)− c(t). Moreover,

ȧ(t) =
˙[

∫ t

−∞
a(t |τ)L(t |τ)dτ]

L(t)
, then

ȧ(t) =
L(t |t)

L(t)
a(t |t) +

∫ t

−∞

L̇(t | τ)

L(t | τ)

L(t | τ)

L(t)
a(t | τ)dτ

−
∫ t

−∞

L(t | τ)

L(t)

L̇(t)

L(t)
a(t | τ)dτ

+
∫ t

−∞

L(t | τ)

L(t)
ȧ(t | τ)dτ

=− va(t)− (n − v)a(t) + (r(t) + v)a(t) + w(t)− c(t)

and ω̇ + w(t) = (r(t) + v)ω(t)
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Perpetual Youth in Continuous time XIII

So

ċ(t) =(ρ + v) [(r(t) + v − n)a(t) + (r(t) + v)ω(t)− c(t)]

=(ρ + v) [(r(t) + v)(a(t) + ω(t))− na(t)− c(t)]

=(ρ + v)

[

(r(t) + v)

ρ + v
c(t)− na(t)− c(t)

]

=(r(t)− ρ)c(t)− (ρ + v)na(t)

ċ(t)

c(t)
=f

′
(k(t))− δ − ρ − (ρ + v)n

k(t)

c(t)
.

where the last term reflects the addition of new agents who are

less wealthy than the average agent.
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Perpetual Youth in Continuous time XIV

The equilibrium dynamics are characterized by

k̇(t) =f (k(t)− (n + δ − v)k(t) − c(t) (51)

ċ(t)

c(t)
=f

′
(k(t))− δ − ρ − (ρ + v)n

k(t)

c(t)
(52)

with initial condition k(0) > 0 given and the transversality

condition.

In steady state k̇(t) = 0 and ċ(t) = 0, so that

f
′
(k∗)− δ − ρ

(ρ + v)n
=

k∗

c∗
(53)

f (k∗)

k∗
− (n + δ − v) =

c∗

k∗
(54)

that is

f (k∗)

k∗
= (n + δ − v) +

(ρ + v)n

f
′(k∗)− δ − ρ

(55)
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Perpetual Youth in Continuous time XV

k

f (k)/k

n + δ − v

f (k)/k

k∗ k∗
MGR
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Perpetual Youth in Continuous time XVI

Proposition In the continuous-time perpetual youth model, there

exists a unique steady state (k∗, c∗) given by (53) and

(54). The steady-state capital-labor ratio k∗ (equation 55)

is less than the level of capital-labor ratio that satisfies the

modified golden rule, k∗
MGR . Starting with any k(0) > 0,

equilibrium dynamics monotonically converge to this

unique steady state.
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Perpetual Youth in Continuous time XVII

Unlike the Ramsey model, in this model it is possible to have

over-accumulation of capital. Assume that every generation is

born having 1 unit of labor, but this labor decreases at a rate ξ, i.e.

labor income for generation τ in period t becomes w(t)e−ξ(t−τ).

From above, c(t | τ) = (ρ + v)(a(t | τ) + ω(t | τ)), where

ω(t | τ) is now ω(t | τ) =
∫ ∞

t
e−(r̄(s,t)+v)(s−t)e−ξ(s−τ)w(s)ds.

Then ω̇(t | τ) = ω(t | τ)(r(t) + v − ξ)− w(t)e−ξ(t−τ).

The equation governing the dynamic of consumption is

ċ(t)

c(t)
=f

′
(k(t))− δ − ρ + ξ − (ρ + v)(n − ξ)

k(t)

c(t)
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Perpetual Youth in Continuous time XVIII

The new dynamic system is

k̇(t) =f (k(t)− (n + δ − v)k(t)− c(t)

ċ(t)

c(t)
=f

′
(k(t))− δ − ρ + ξ − (ρ + v)(n + ξ)

k(t)

c(t)

In steady state k̇(t) = 0 and ċ(t) = 0, so that

f
′
(k∗∗)− δ − ρ + ξ

(ρ + v)(n + ξ)
=

k∗∗

c∗∗
(56)

that is

f (k∗∗)

k∗∗
= (n + δ − v) +

(ρ + v)(n + ξ)

f
′(k∗)− δ − ρ + ξ

(57)
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Perpetual Youth in Continuous time XIX

k

f (k)/k

n + δ − v

f (k)/k

k∗k∗
MGR
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Conclusions

Overlapping generations often are more realistic than infinity-lived

representative agents.

Models with overlapping generations fall outside the scope of the

First Welfare Theorem:

they were partly motivated by the possibility of Pareto suboptimal
allocations.

Equilibria may be “dynamically inefficient” and feature

overaccumulation: unfunded Social Security (other

assets/bubbles) can ameliorate the problem.
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Conclusions

Declining path of labor income important for overaccumulation,

and what matters is not finite horizons but arrival of new

individuals.

Overaccumulation and Pareto suboptimality: pecuniary

externalities created on individuals that are not yet in the

marketplace.

Not overemphasize dynamic inefficiency: major question of

economic growth is why so many countries have so little capital.
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