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Dynamic Programming under Certainty

Most of the problems in dynamics economics require us to find optimal paths...but
how?

If problem is finite in discrete time: Convex optimization (what you learned in
undergrad calc)

maxU(c0, . . . , cT )
st G (c0, . . . , cT )εB

=⇒ FOC: ∇U = λ∇G
SOC: U − λG quasi-concave

If problem is infinite:
Dynamic Programming
Optimal Control

Discrete time: Bellman’s equation
Continuous time: Hamiltonian
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Discrete-Time Infinite-Horizon Optimization

Section 1

Discrete-Time Infinite-Horizon Optimization
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Discrete-Time Infinite-Horizon Optimization Problem

Subsection 1

Problem
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Discrete-Time Infinite-Horizon Optimization Problem

Dynamic Programming I

Canonical dynamic optimization program in discrete time:

sup
{xt ,yt}∞t=0

∞∑
t=0

βtŨ(t, xt , yt)

subject to

yt ∈ G̃ (t, xt) for all t ≥ 0

xt+1 = f̃ (t, xt , yt) for all t ≥ 0
x0 given,
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Discrete-Time Infinite-Horizon Optimization Problem

Dynamic Programming II

(cont...) where
β ∈ [0, 1] is the discount factor
xt ∈ X ⊂ RKx and yt ∈ Y ⊂ RKy , for some Kx ,Ky ≥ 1.
xt denotes the state variables and yt denotes the control variables.
The real-valued function

Ũ : Z+ × X × Y → R

is the instantaneous payoff function of this problem and
∑∞

t=0 β
tŨ(t, xt , yt) is

the overall objective function.
Let G̃(t, x) be a set-valued mapping or a correspondence, that is

G̃ : Z+ × X ⇒ Y .
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Discrete-Time Infinite-Horizon Optimization Problem

Dynamic Programming III

The previous problem, can be rewritten as follows:

Problem 6.1 :

V ∗ (0, x0) = sup
{xt+1}∞t=0

∞∑
t=0

βtU(t, xt , xt+1)

subject to
xt+1 ∈ G (t, xt), for all t ≥ 0.

x0 given.

Remarks:
Constraint xt+1 ∈ G(t, xt): which xt+1 can be chosen given xt .
Notice that xt+1 becomes the control variable, xt is till our state variable.
sup rather than max: no guarantee that maximal value is attained by any
feasible plan.
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Discrete-Time Infinite-Horizon Optimization Problem

Dynamic Programming IV

Remarks (cont...)
Optimal plan: when maximal value is attained by {x∗t+1}∞t=0 ∈ X∞.
Problem is non-stationary: U (xt , xt+1, t).
V ∗ : Z+ × X → R or value function: value of pursuing the optimal strategy
starting with initial state x0. It specifies the supremum (highest possible value)
that the objective function can reach or approach (starting with some xt at
time t).
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Discrete-Time Infinite-Horizon Optimization Example

Subsection 2

Example
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Discrete-Time Infinite-Horizon Optimization Example

Dynamic Programming V

Example

Optimal Growth Problem
Consider the problem

max
{ct ,kt}∞t=0

∞∑
t=0

βtu (ct)

subject to
kt+1 ≤ f (kt)− ct + (1− δ) kt ,

kt ≥ 0 and given k0.
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Discrete-Time Infinite-Horizon Optimization Example

Dynamic Programming VI

Example

(cont...) Maps into the general formulation:

max
{kt+1}∞t=0

∞∑
t=0

βtu (f (kt)− kt+1 + (1− δ) kt)

subject to kt ≥ 0. Here we have
xt = kt , xt+1 = kt+1,

U (kt , kt+1) = u (f (kt)− kt+1 + (1− δ) kt) and
G (kt) given by kt+1 ∈ [0, f (kt) + (1− δ) kt ].
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Stationary Dynamic Programming

Section 2

Stationary Dynamic Programming
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Stationary Dynamic Programming Problem

Subsection 1

Problem
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Stationary Dynamic Programming Problem

Stationary Dynamic Programming I

The stationary form of Problem 6.1 is

Problem 6.2 :

V ∗ (x0) = sup
{xt+1}∞t=0

∞∑
t=0

βtU(xt , xt+1)

subject to
xt+1 ∈ G (xt), for all t ≥ 0.

x0 given.
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Stationary Dynamic Programming Problem

Stationary Dynamic Programming I

Assumed discounted objective function, not sup
{xt+1}∞t=0

U(x0, x1, ...).

Discounted objective function ensures time-consistency.
Problem 6.2 or sequence problem:

choosing an infinite sequence {xt}∞t=0 from some (vector) space of infinite
sequences.
E.g. {xt}∞t=0 ∈ X∞ ⊂ L∞, where L∞: vector space of infinite sequences
bounded with the ‖·‖∞ norm, which we will denote throughout by ‖·‖).

Sequence problems solutions often difficult to characterize both analytically
and numerically.
Idea of dynamic programming: transform the problem into one of finding a
function rather than a sequence
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Stationary Dynamic Programming Problem

Stationary Dynamic Programming II

The basic idea of dynamic programming is to turn the sequence problem into
a functional equation; that is, to transform the problem into one of finding a
function rather than a sequence. The relevant functional equation can be
written as follows.

Problem 6.3 :

V (x) = sup
y∈G(x)

{U(x , y) + βV (y)} , for all x ∈ X , (2.1)

where V : X → R
Remarks:

Instead of {xt}∞t=0, in (2.1) choose a policy: what xt+1 should be for a given xt .
Since U (·, ·) does not depend on time, no reason for policy to be
time-dependent either.
Denote control vector by y and state vector by x : problem is choosing right y
for any x .
Mathematically, corresponds to maximizing V (x) for any x ∈ X .
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Stationary Dynamic Programming Problem

Stationary Dynamic Programming III

Remarks (cont...)
Only subtlety in (2.1) is recursive formulation: V (·) on the right-hand side.
Functional equation in Problem 6.3 also called the Bellman equation.
Functional equation easy to work with in many instances.
In applied mathematics and engineering: computationally convenient.
In economics: gives better economic insights, similar to the logic of comparing
today to tomorrow.
In some special but important cases: solution to Problem 3 simpler to
characterize analytically than solution of 2.
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Stationary Dynamic Programming Problem

Stationary Dynamic Programming IV

Form of Problem 3 suggests itself naturally from Problem 2.
Suppose Problem 2 has a maximum starting at x0 attained by {x∗t }

∞
t=0 with

x∗0 = x0.
Then under some relatively weak technical conditions:

V ∗ (x0) =
∞∑
t=0

βtU(x∗t , x
∗
t+1)

= U(x0, x
∗
1 ) + β

∞∑
s=0

βsU(x∗s+1, x
∗
s+2)

= U(x0, x
∗
1 ) + βV ∗ (x∗1 ) .

Encapsulates basic idea of dynamic programming: Principle of Optimality.
Break optimal plan into two parts: what is optimal to do today, and the
optimal continuation path.
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Stationary Dynamic Programming Problem

Stationary Dynamic Programming V

Solution can be represented by time invariant policy function determining
xt+1 for a given xt

π : X → X .

Two complications in general:
1 a control reaching the optimal value may not exist
2 there may be more than one maximizer: not a policy function but a

correspondence Π : X ⇒ X .

Ignoring complications, once value function V is determined, if optimal policy
is given by a policy function π (x), then

V (x) = U(x , π (x)) + βV (π (x)), for all x ∈ X ,

Provides one way of determining the policy function.
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Stationary Dynamic Programming Theorems

Section 3

Stationary Dynamic Programming Theorems
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Stationary Dynamic Programming Theorems

Stationary Dynamic Programming

Consider a sequence {x∗t }∞t=0 which attains the supremum in Problem 2.
Main purpose is to ensure this sequence satisfies recursive equation:

V (x∗t ) = U(x∗t , x
∗
t+1) + βV (x∗t+1), (3.1)

for all t = 0, 1, 2, ...,

and that any solution to (3.1) will also be a solution to Problem 2.
Define the set of feasible sequences or plans starting with an initial value xt
as:

Φ(xt) = {{xs}∞s=t : xs+1 ∈ G (xs), for s = t, t + 1, ...}.

Denote a typical element of the set Φ(x0) by x = (x0, x1, ...) ∈Φ(x0).
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Stationary Dynamic Programming Theorems Assumptions

Subsection 1

Assumptions
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Stationary Dynamic Programming Theorems Assumptions

Assumptions I

Assumption 6.1

G (x) is nonempty for all x ∈ X ; and for all x0 ∈ X and x ∈Φ(x0),
limn→∞

∑n
t=0 β

tU(xt , xt+1) exists and is finite.

Stronger than necessary: sufficient that the limit exists.
But if households or firms achieve infinite value, mathematically typically not
well defined and essence of economics, tradeoffs in the face of scarcity, would
be absent.
Could use “overtaking criteria:” compare sequences by looking at whether one
of them gives higher utility than the other one at each date after some finite
threshold.
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Stationary Dynamic Programming Theorems Assumptions

Some Definitions I

Definition (Upper hemicontinuity)

A correspondence G : X ⇒ Y is said to be upper hemicontinuous at the point
x ∈ X , if for any open neighborhood A of G (x), A ⊂ Y , there exists a
neighborhood B(x) ⊂ X of x such that for all x̃ in B(x), G (x̃) is a subset of A.
Equivalently, a correspondence G : X ⇒ Y is said to be upper hemicontinuous at
the point x ∈ X , if for any sequence {xn, yn} such that yn ∈ G (xn), xn → x and
yn → y ∈ Y , it follows that y ∈ G (x).
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Stationary Dynamic Programming Theorems Assumptions

Some Definitions II

Definition (Lower hemicontinuity)

A correspondence G : X ⇒ Y is said to be lower hemicontinuous at the point
x ∈ X , if for any open set A ⊂ Y such that A ∩ G (x) 6= ∅, there exists a
neighborhood B(x) ⊂ X of x such that for all x̃ in B(x), A ∩ G (x̃) 6= ∅.
Equivalently, a correspondence G : X ⇒ Y is said to be lower hemicontinuous at
the point x ∈ X , if for any sequence {xn} such that xn → x , for any y ∈ G (x),
there exists a subsequence {xnk} and a sequence {yk} such that yk ∈ G (xnk ) and
yk → y ∈ Y .
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Stationary Dynamic Programming Theorems Assumptions

Some Definitions III

Definition (Continuity)

A correspondence G : X ⇒ Y is said to be continuous at the point x ∈ X , if it is
both upper and lower hemicontinuous at x .

Definition (Graph)

The graph of a correspondence G : X ⇒ Y is the set
XG = {(x , y) ∈ X × Y | y ∈ G (x)}.

Ömer Özak (SMU) Economic Growth Macroeconomics II 27 / 147



Stationary Dynamic Programming Theorems Assumptions

Assumptions II

Assumption 6.2

X is a compact subset of RK , G is nonempty, compact-valued and continuous.
Moreover, U : XG → R is continuous, where XG = {(x , y) ∈ X × X : y ∈ G (x)}.

Need G (x) compact-valued: optimization problems with choices from
non–compact sets are not well behaved
U continuous leads to little loss of generality for most economic applications.
Most restrictive assumption is X is compact.
Most important results can be generalized to X not compact, but requires
additional notation and more difficult analysis.
Note since X is compact, G (x) is continuous and compact-valued, XG is also
compact.
Since a continuous function from a compact domain is also bounded,
Assumption 6.2 also implies that U is bounded.
Assumptions 6.1 and 6.2 together ensure that in both Problems 2 and 3, the
supremum (the maximal value) is attained at a finite value for some feasible
plan x∗.
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Stationary Dynamic Programming Theorems Assumptions

Assumptions III

Assumption 6.3

G is convex: for any α ∈ [0, 1], and x , x ′ ∈ X , whenever y ∈ G (x) and y ′ ∈ G (x ′)

αy + (1− α)y ′ ∈ G (αx + (1− α)x ′) .

Additionally, U is strictly concave: for any α ∈ (0, 1) and any (x , y), (x ′, y ′) ∈ XG

U (αx + (1− α)x ′, αy + (1− α)y ′)) ≥ αU(x , y) + (1− α)U(x ′, y ′),

and if x 6= x ′,

U (αx + (1− α)x ′, αy + (1− α)y ′)) > αU(x , y) + (1− α)U(x ′, y ′).
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Stationary Dynamic Programming Theorems Assumptions

Assumptions IV

Assumption 6.4

For each y ∈ X , U(·, y) is strictly increasing in each of its first K arguments, and
G is monotone in the sense that x ≤ x ′ implies G (x) ⊂ G (x ′).

Assumption 6.5

U is continuously differentiable on the interior of its domain XG .
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Stationary Dynamic Programming Theorems Theorems

Subsection 2

Theorems
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Stationary Dynamic Programming Theorems Theorems

Dynamic Programming Theorems I

Theorem 6.1 (Equivalence of Values)

Suppose Assumptions 6.1 and 6.2 hold. Then for any x ∈ X , V ∗ (x) defined in
Problem 2 is also a solution to Problem 3. Moreover, any V (x) defined in
Problem 3 that satisfies limt→∞ βtV (xt) = 0 for all (x , x1, x2, ...) ∈Φ(x) is also a
solution to Problem 2, so that V ∗ (x) = V (x) for all x ∈ X .

Theorem 6.2 (Principle of Optimality)

Suppose Assumption 6.1 holds. Let x∗ ∈Φ(x0) be a feasible plan that attains
V ∗ (x0) in Problem 2. Then for t = 0, 1, ... with x∗0 = x0,

V ∗(x∗t ) = U(x∗t , x
∗
t+1) + βV ∗(x∗t+1) (3.2)

Moreover, if any x∗ ∈Φ(x0) satisfies (3.2), then it attains the optimal value in
Problem 2.

Ömer Özak (SMU) Economic Growth Macroeconomics II 32 / 147



Stationary Dynamic Programming Theorems Theorems

Dynamic Programming Theorems II

Returns from an optimal plan (sequence) x∗ ∈Φ(x0) can be broken into the
current return, U(x∗t , x

∗
t+1), and the continuation return βV ∗(x∗t+1),

identically given by the discounted value of a problem starting from x∗t+1.
Since V ∗ in Problem 2 and V in Problem 3 are identical from the
Equivalence of Values Theorem, (3.2) also implies

V (x∗t ) = U(x∗t , x
∗
t+1) + βV (x∗t+1).

Second part equally important: if any feasible plan x∗ starting with x0,
x∗ ∈Φ(x0), satisfies (3.2), then x∗ attains V ∗ (x0).
We can go from the solution of the recursive problem to the solution of the
original problem and vice versa under Assumptions 6.1 and 6.2.
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Stationary Dynamic Programming Theorems Theorems

Dynamic Programming Theorems III

Theorem 6.3 (Existence of Solutions)

Suppose that Assumptions 6.1 and 6.2 hold. Then there exists a unique
continuous and bounded function V : X → R that satisfies (2.1). Moreover, an
optimal plan x∗ ∈Φ(x0) exists for any x0 ∈ X .

Uniqueness of the value function combined with Equivalence of Values
Theorem implies an optimal solution achieves supremum V ∗ in Problem 2
and also that like V , V ∗ is continuous and bounded.
But optimal plan that solves Problem 2 or 3 may not be unique.

Theorem 6.4 (Concavity of the Value Function)

Suppose that Assumptions 6.1, 6.2 and 6.3 hold. Then the unique V : X → R
that satisfies (2.1) is strictly concave.
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Stationary Dynamic Programming Theorems Theorems

Dynamic Programming Theorems IV

Corollary 6.1

Suppose that Assumptions 6.1, 6.2 and 6.3 hold. Then there exists a unique
optimal plan x∗ ∈Φ(x0) for any x0 ∈ X . Moreover, the optimal plan can be
expressed as x∗t+1 = π (x∗t ), where π : X → X is a continuous policy function.

I.e., policy function π is indeed a function, not a correspondence because x∗

is uniquely determined.
Also implies π is continuous in the state vector.
Moreover, if a vector of parameters z continuously affects either Φ or U,
same argument establishes π is also continuous in z.
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Stationary Dynamic Programming Theorems Theorems

Dynamic Programming Theorems V

Theorem 6.5 (Monotonicity of the Value Function)
Suppose that Assumptions 6.1, 6.2 and 6.4 hold and let V : X → R be the unique
solution to (2.1). Then V is strictly increasing in all of its arguments.

Difficulty to characterize solution using differential calculus with (2.1):
right-hand side includes V .

Theorem 6.6 (Differentiability of the Value Function)

Suppose that Assumptions 6.1, 6.2, 6.3 and 6.5 hold. Let π be the policy function
defined above and assume that x ′ ∈IntX and π (x ′) ∈IntG (x ′), then V (x) is
continuously differentiable at x ′, with derivative given by

DV (x ′) = DxU (x ′, π (x ′)) . (3.3)
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The Contraction Mapping Theorem and Applications*

Section 4

The Contraction Mapping Theorem and Applications*
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The Contraction Mapping Theorem and Applications* Contraction Mapping Theorem

Subsection 1

Contraction Mapping Theorem

Ömer Özak (SMU) Economic Growth Macroeconomics II 38 / 147



The Contraction Mapping Theorem and Applications* Contraction Mapping Theorem

Contraction Mapping Theorem and Applications* I

Recall (S , d) is a metric space, if S is a non-empty set and d is a metric
defined over this space with the usual properties.
Operators or mappings: “functions” from the metric space into itself, denoted
by T and writing Tz for the image of a point z ∈ S under T , and T (Z )
when T is applied to a subset Z of S .

Definition Let (S , d) be a metric space and T : S → S be an operator
mapping S into itself. T is a contraction mapping (with modulus
β) if for some β ∈ (0, 1),

d(Tz1,Tz2) ≤ βd(z1, z2), for all z1, z2 ∈ S .
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The Contraction Mapping Theorem and Applications* Contraction Mapping Theorem

Contraction Mapping Theorem and Applications* II

Example: Take a simple interval of the real line, S = [a, b], with usual metric
d(z1, z2) = |z1 − z2|. Then T : S → S is a contraction if for some β ∈ (0, 1),

|Tz1 − Tz2|
|z1 − z2|

≤ β < 1, all z1, z2 ∈ S with z1 6= z2.

Definition A fixed point of T is any element of S satisfying Tz = z .

Recall (S , d) is complete if every Cauchy sequence (whose elements are
getting closer) in S converges to an element in S .

Theorem (Contraction Mapping Theorem) Let (S , d) be a complete
metric space and suppose that T : S → S is a contraction. Then
T has a unique fixed point, ẑ , i.e., there exists a unique ẑ ∈ S such
that

Tẑ = ẑ .
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The Contraction Mapping Theorem and Applications* Proof

Subsection 2

Proof
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The Contraction Mapping Theorem and Applications* Proof

Proof of Contraction Mapping Theorem I

(Existence) Note T nz = T (T n−1z) for any n = 1, 2, .... Choose z0 ∈ S , and
construct a sequence {zn}∞n=0 with each element in S , such that zn+1 = Tzn
so that

zn = T nz0.

Since T is a contraction:

d(z2, z1) = d(Tz1,Tz0) ≤ βd(z1, z0).

Repeating this argument

d(zn+1, zn) ≤ βnd(z1, z0), n = 1, 2, ... (4.1)

Hence, for any m > n,

d(zm, zn) ≤ d(zm, zm−1) + ...+ d(zn+2, zn+1) + d(zn+1, zn) (4.2)
≤

(
βm−1 + ...+ βn+1 + βn

)
d(z1, z0)

= βn
(
βm−n−1 + ...+ β + 1

)
d(z1, z0) ≤ βn

1− β
d(z1, z0),
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The Contraction Mapping Theorem and Applications* Proof

Proof of Contraction Mapping Theorem II

Above: first inequality uses the triangle inequality, second uses (4.1), last
uses 1/ (1− β) = 1 + β + β2 + ... > βm−n−1 + ...+ β + 1.
Inequalities in (4.2) imply as n→∞, m→∞, zm and zn will be approaching
each other, so that {zn}∞n=0 is a Cauchy sequence.
Since S is complete, every Cauchy sequence in S has a limit point in S ,
therefore:

zn → ẑ ∈ S .

Note that for any z0 ∈ S and any n ∈ N, we have

d(Tẑ , ẑ) ≤ d(Tẑ ,T nz0) + d(T nz0, ẑ)

≤ βd(ẑ ,T n−1z0) + d(T nz0, ẑ),

First relationship uses the triangle inequality, and second that T is a
contraction.
Since zn → ẑ , both of the terms on the right tend to zero as n→∞, which
implies that d(Tẑ , ẑ) = 0, and therefore Tẑ = ẑ , so ẑ is a fixed point.
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The Contraction Mapping Theorem and Applications* Proof

Proof of Contraction Mapping Theorem III

(Uniqueness) Suppose, to obtain a contradiction, that there exist ẑ , z ∈ S ,
such that Tz = z and Tẑ = ẑ with ẑ 6= z .
This implies

0 < d (ẑ , z) = d(Tẑ ,Tz) ≤ βd(ẑ , z),

which delivers a contradiction in view of the fact that β < 1.
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The Contraction Mapping Theorem and Applications* Proof

Example: Difference Equation

Consider the following difference equation:

xt+1 = axt + b

where xtεR for all t ≥ 0. Then

T (x) = ax + b

and

‖T (x)− T (x ′)‖ = ‖(ax + b)− (ax ′ + b)‖ = ‖a(x − x ′)‖ ≤ |a| |x − x ′| .

So, T (x) is a contraction if |a| < 1, in which case there exists a unique fixed
point x∗ = T (x∗) and xt → x∗ as t →∞.
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The Contraction Mapping Theorem and Applications* Proof

Example: Differential Equation I

Consider the following one-dimensional differential equation

ẋ(t) = f (x(t)) , (4.3)

with a boundary condition x(0) = c ∈ R.
Suppose that f : R→ R is Lipschitz continuous: it is continuous and for
some M <∞, it satisfies |f (x ′′)− f (x ′)| ≤ M |x ′′ − x ′| for all x ′, x ′′ ∈ R.
Contraction Mapping Theorem (CMT) can be used to prove the existence of
a continuous function x∗(t) that is the unique solution to this differential
equation on any compact interval [0, s] for some s ∈ R+.
Consider the space of continuous functions on [0, s], C [0, s], and define the
operator T such that for any g ∈ C [0, s],

Tg (z) = c +

∫ z

0
f (g (x)) dx .

Notice that a fixed point of T is the solution we need.
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The Contraction Mapping Theorem and Applications* Proof

Example: Differential Equation II

T is a mapping from the space of continuous functions on [0, s] into itself,
i.e., T : C [0, s]→ C [0, s].
Moreover, T is a contraction for some s because for any z ∈ [0, s], by the
Lipschitz continuity of f (·).∣∣∣∣∫ z

0
f (g (x)) dx −

∫ z

0
f (g̃ (x)) dx

∣∣∣∣ ≤ ∫ z

0
M |g (x)− g̃ (x)| dx (4.4)

This implies that

‖Tg (z)− Tg̃ (z)‖ ≤ M × s × ‖g − g̃‖ ,

Choosing s < 1/M, T is indeed a contraction.
Applying the Contraction Mapping Theorem there exists a unique fixed point
of T over C [0, s].
This fixed point is the unique solution to the differential equation and it is
also continuous.
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The Contraction Mapping Theorem and Applications* Proof

Applications of Contraction Mapping Theorem I

Main use of the CMT for us: it can be applied to space of functions, so
applying it to equation (2.1) will establish the existence of a unique V in
Problem 6.2.
Thus must prove that the recursion in (2.1) defines a contraction mapping.
Recall that if (S , d) is a complete metric space and S ′ is a closed subset of S ,
then (S ′, d) is also a complete metric space.

Theorem (Applications of Contraction Mappings) Let (S , d) be a
complete metric space, T : S → S be a contraction mapping with
Tẑ = ẑ .

1 If S ′ is a closed subset of S , and T (S ′) ⊂ S ′, then ẑ ∈ S ′.
2 Moreover, if T (S ′) ⊂ S ′′ ⊂ S ′, then ẑ ∈ S ′′.
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The Contraction Mapping Theorem and Applications* Proof

Applications of Contraction Mapping Theorem II

Proof:
Take z0 ∈ S ′, and construct the sequence {T nz0}∞n=0.
Each element of this sequence is in S ′ by the fact that T (S ′) ⊂ S ′.
CMT implies that T nz0 → ẑ .
Since S ′ is closed, ẑ ∈ S ′, proving part 1.
We know that ẑ ∈ S ′.
Then the fact that T (S ′) ⊂ S ′′ ⊂ S ′ implies that ẑ = Tẑ ∈ T (S ′) ⊂ S ′′,
establishing part 2.

Second part very important to prove results such as strict concavity or that a
function is strictly increasing

The set of strictly concave functions or the set of the strictly increasing
functions are not closed (and complete).
Thus cannot apply the CMT to these spaces of functions.

Second part enables us to circumvent this problem.
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The Contraction Mapping Theorem and Applications* Proof

Blackwell’s Sufficient Conditions

Difficult to check whether an operator is indeed a contraction, especially with
spaces whose elements correspond to functions.
For a real valued function f (·) and some constant c ∈ R we define
(f + c)(x) ≡ f (x) + c .

Theorem (Blackwell’s Sufficient Conditions For a Contraction) Let
X ⊆ RK , and B(X ) be the space of bounded functions f : X → R
defined on X . Suppose that T : B(X )→ B(X ) is an operator
satisfying the following two conditions:

1 (monotonicity) For any f , g ∈ B(X ) and f (x) ≤ g(x) for all
x ∈ X implies (Tf )(x) ≤ (Tg)(x) for all x ∈ X .

2 (discounting) There exists β ∈ (0, 1) such that for all
f ∈ B(X ), c ≥ 0 and x ∈ X

[T (f + c)](x) ≤ (Tf )(x) + βc .

Then, T is a contraction with modulus β.
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The Contraction Mapping Theorem and Applications* Proof

Proof of Blackwell’s Sufficient Conditions

Let ‖·‖ denote the sup norm, so that ‖f − g‖ = supx∈X |f (x)− g (x)|.
Then, by definition for any f , g ∈ B(X ),

f (x) ≤ g (x) + ‖f − g‖ for any x ∈ X ,

(Tf ) (x) ≤ T [g + ‖f − g‖] (x) for any x ∈ X ,

(Tf ) (x) ≤ (Tg) (x) + β ‖f − g‖ for any x ∈ X ,

the second line applies T on both sides and uses monotonicity, the third uses
discounting (‖f − g‖ is simply a number).
By the converse argument,

g (x) ≤ f (x) + ‖g − f ‖ for any x ∈ X ,

(Tg) (x) ≤ T [f + ‖g − f ‖] (x) for any x ∈ X ,

(Tg) (x) ≤ (Tf ) (x) + β ‖g − f ‖ for any x ∈ X .

Combining the last two inequalities:

‖Tf − Tg‖ ≤ β ‖f − g‖ .
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Proofs of the Main Dynamic Programming Theorems*

Section 5

Proofs of the Main Dynamic Programming Theorems*
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Proofs of the Main Dynamic Programming Theorems* Proofs of Theorems

Subsection 1

Proofs of Theorems
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Proofs of the Main Dynamic Programming Theorems* Proofs of Theorems

Proofs of the Main Dynamic Programming Theorems* I

For a feasible infinite sequence x = (x0, x1, ...) ∈Φ(x0) starting at x0, let the
value of choosing this potentially non-optimal infinite feasible sequence be

—U (x) ≡
∞∑
t=0

βtU (xt , xt+1)

Assumption 6.1 implies—U (x) exists and is finite.
—U (x) can be separated into two parts: current return and the continuation
return.

Lemma Suppose that Assumption 6.1 holds. Then for any x0 ∈ X and any
x ∈Φ(x0), we have that

—U (x) = U(x0, x1) + β—U(x′)

where x′ = (x1, x2, ...).
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Proofs of the Main Dynamic Programming Theorems* Proofs of Theorems

Proofs of the Main Dynamic Programming Theorems* II

Proof: Since under Assumption 6.1—U (x) exists and is finite, we have

—U (x) =
∞∑
t=0

βtU (xt , xt+1)

= U (x0, x1) + β

∞∑
s=0

βsU (xs+1, xs+2)

= U (x0, x1) + β—U(x′)

To prove the theorems, useful to be more explicit about what it means for V
and V ∗ to be solutions to Problems 6.2 and 6.3.
Problem 6.2: for any x0 ∈ X ,

V ∗(x0) = sup
x∈Φ(x0)

—U(x).
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Proofs of the Main Dynamic Programming Theorems* Proofs of Theorems

Proofs of the Main Dynamic Programming Theorems* III

Assumption 6.1 ensures that all values are bounded, so

V ∗(x0) ≥—U(x) for all x ∈ Φ(x0), (5.1)

However, if some function Ṽ satisfies condition (5.1), so will αṼ for α > 1.
Therefore, this condition is not sufficient; also require that

for any ε > 0, there exists x′ ∈ Φ(x0) s.t. V ∗(x0) ≤—U(x′) + ε, (5.2)

Similarly: for V (·) to be a solution to Problem 6.2, for any x0 ∈ X ,

V (x0) ≥ U(x0, y) + βV (y), all y ∈ G (x0), (5.3)

for any ε > 0, there exists y ′ ∈ G (x0) (5.4)
s.t. V (x0) ≤ U(x0, y

′) + βV (y ′) + ε.
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Proofs of the Main Dynamic Programming Theorems* Proofs of Theorems

Proof of Equivalence of Values Theorem I

If β = 0, Problems 6.1 and 6.2 are identical, thus the result follows
immediately.
Suppose β > 0 and take an arbitrary x0 ∈ X and some x1 ∈ G (x0).
The objective function in Problem 6.2 is continuous in the product topology
in view of Assumptions 6.1 and 6.2.
Moreover, the constraint set Φ(x0) is a closed subset of X∞.
From Assumption 6.2, X is compact. By Tychonoff’s Theorem X∞ is
compact in the product topology.
A closed subset of a compact set is compact, so Φ(x0) is compact.
Apply Weierstrass’ Theorem to Problem 6.2: there exists x ∈Φ(x0) attaining
V ∗ (x0).
Moreover, the constraint set is a continuous correspondence (again in the
product topology).
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Proofs of the Main Dynamic Programming Theorems* Proofs of Theorems

Proof of Equivalence of Values Theorem II

Apply Berge’s Maximum Theorem: V ∗ (x0) is continuous.
Since x0 ∈ X and X is compact, this implies V ∗ (x0) is bounded.
A similar reasoning implies that there exists x′∈Φ(x1) attaining V ∗ (x1).
Next, since (x0, x′) ∈Φ(x0) and V ∗ (x0) is the supremum in Problem 6.2
starting with x0, the Lemma above implies

V ∗ (x0) ≥ U (x0, x1) + β—U(x′),
= U (x0, x1) + βV ∗ (x1) ,

thus verifying (5.3).
Next, take an arbitrary ε > 0. By (5.2), there exists
x′ε= (x0, x

′
ε1, x

′
ε2, ...)∈Φ(x0) such that

—U (x′ε) ≥ V ∗ (x0)− ε.
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Proofs of the Main Dynamic Programming Theorems* Proofs of Theorems

Proof of Equivalence of Values Theorem III

Now since x′′ε= (x ′ε1, x
′
ε2, ...) ∈Φ(x ′ε1) and V ∗ (x ′ε1) is the supremum in

Problem 6.3 starting with x ′ε1, the Lemma above implies

U (x0, x
′
ε1) + βŪ (x′′ε ) ≥ V ∗ (x0)− ε

U (x0, x
′
ε1) + βV ∗ (x ′ε1) ≥ V ∗ (x0)− ε,

The last inequality verifies (5.4) since x ′ε1 ∈ G (x0) for any ε > 0.
Thus, any solution to Problem 6.2 satisfies (5.3) and (5.4), and is thus a
solution to Problem 6.3.
To establish the reverse, note (5.3) implies that for any x1 ∈ G (x0),

V (x0) ≥ U (x0, x1) + βV (x1) .
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Proofs of the Main Dynamic Programming Theorems* Proofs of Theorems

Proof of Equivalence of Values Theorem IV

Substituting recursively for V (x1), V (x2), etc., and defining x = (x0, x1, ...):

V (x0) ≥
n∑

t=0

βtU (xt , xt+1) + βn+1V (xn+1) .

Since n→∞,
∑n

t=0 β
tU (xt , xt+1)→—U (x) and βn+1V (xn+1)→ 0 (by

hypothesis), we have that
V (x0) ≥—U (x) ,

for any x ∈Φ(x0), thus verifying (5.1).
Next, let ε > 0 be a positive scalar. From (5.4), for any ε′ = ε (1− β) > 0,
there exists xε1∈G (x0) such that

V (x0) ≤ U (x0, xε1) + βV (xε1) + ε′.
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Proofs of the Main Dynamic Programming Theorems* Proofs of Theorems

Proof of Equivalence of Values Theorem V

Let xεt ∈ G (xεt−1), with xε0 = x0, and define xε ≡ (x0, xε1, xε2, ...).
Again substituting recursively for V (xε1), V (xε2),...,

V (x0) ≤
n∑

t=0

βtU (xεt , xεt+1) + βn+1V (xn+1)

+ε′ + ε′β + ...+ ε′βn

≤ —U (xε) + ε,

Last line uses definition of ε (ε = ε′
∑∞

t=0 β
t) and that as n→∞,∑n

t=0 β
tU (xεt , xεt+1)→—U (xε).

This establishes that V (x0) satisfies (5.2), and completes the proof. �
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Proofs of the Main Dynamic Programming Theorems* Proofs of Theorems

Proof of the Principle of Optimality Theorem I

By hypothesis x∗ ≡ (x0, x
∗
1 , x
∗
2 , ...) is a solution to Problem 6.2, i.e., it attains

the supremum, V ∗ (x0) starting from x0.
Let x∗t ≡

(
x∗t , x

∗
t+1, ...

)
.

First show by induction that for any t ≥ 0, x∗t attains the supremum starting
from x∗t , so that

—U(x∗t ) = V ∗ (x∗t ) . (5.5)

Base step of induction for t = 0: by definition, x∗0 = x∗ attains V ∗ (x0).
Suppose (5.5) is true for t, and we will establish it for t + 1.
Equation (5.5) implies that

V ∗(x∗t ) = —U(x∗t ) (5.6)
= U(x∗t , x

∗
t+1) + β—U(x∗t+1).
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Proofs of the Main Dynamic Programming Theorems* Proofs of Theorems

Proof of the Principle of Optimality Theorem II

Let xt+1 =
(
x∗t+1, xt+2, ...

)
∈Φ
(
x∗t+1

)
be any feasible plan starting with x∗t+1.

By definition, xt = (x∗t , xt+1) ∈Φ(x∗t ). Since V ∗ (x∗t ) is the supremum
starting with x∗t :

V ∗ (x∗t ) ≥ —U(xt)
= U(x∗t , x

∗
t+1) + β—U(xt+1).

Combining this inequality with (5.6), we obtain for all xt+1 ∈Φ
(
x∗t+1

)
V ∗
(
x∗t+1

)
=—U(x∗t+1) ≥—U(xt+1)

This establishes that x∗t+1 attains the supremum starting from x∗t+1 and
completes the induction step.
Thus (5.5) holds for all t ≥ 0.
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Proofs of the Main Dynamic Programming Theorems* Proofs of Theorems

Proof of the Principle of Optimality Theorem III

Equation (5.5) then implies that

V ∗ (x∗t ) = —U(x∗t )

= U(x∗t , x
∗
t+1) + β—U(x∗t+1)

= U(x∗t , x
∗
t+1) + βV ∗

(
x∗t+1

)
,

establishing (3.2) and thus completing the proof of the first part of the
theorem.
Now suppose that (3.2) holds for x∗ ∈Φ(x0). Substituting repeatedly for x∗:

V ∗ (x0) =
n∑

t=0

βtU
(
x∗t , x

∗
t+1
)

+ βn+1V ∗ (xn+1) .
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Proofs of the Main Dynamic Programming Theorems* Proofs of Theorems

Proof of the Principle of Optimality Theorem IV

In view of the fact that V ∗ (·) is bounded:

—U(x∗) = lim
n→∞

n∑
t=0

βtU
(
x∗t , x

∗
t+1
)

= V ∗ (x0) ,

Thus x∗ attains the optimal value in Problem 6.2, completing the proof of
the second part. �
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Proofs of the Main Dynamic Programming Theorems* Proofs of Theorems

Proof of Existence Theorem I

Existence can be reached either by looking at Problem 6.2 or at Problem 6.3,
and then exploiting their equivalence.

Version 1:
Consider Problem 6.2:

The argument at the beginning of the proof of the Equivalence of Values
Theorem again enables us to apply Weierstrass’s Theorem, to conclude that
an optimal path x ∈Φ0 exists. �

Version 2
Let C (X ) be the set of continuous functions defined on X , endowed with the
sup norm, ‖f ‖ = supx∈X |f (x)|.
In view of Assumption 6.2, X is compact and therefore all functions in C (X )
are bounded since they are continuous and X is compact.
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Proofs of the Main Dynamic Programming Theorems* Proofs of Theorems

Berge’s Maximum Theorem

Theorem
Let X and Y be metric spaces and f : X ×Y → R be a function jointly continuous
in its two arguments, and G : X ⇒ Y be a a compact-valued correspondence. Let

f ∗(x) = max
yεG(x)

f (x , y) and Π(x) = arg max
yεG(x)

f (x , y)

If G is continuous at some xεX , then f ∗is continous at x and Π is non-empty,
compact-valued and continuous at x .
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Proofs of the Main Dynamic Programming Theorems* Proofs of Theorems

Proof of Existence Theorem II

For V ∈ C (X ), define the operator T as

TV (x) = max
y∈G(x)

{U(x , y) + βV (y)} . (5.7)

A fixed point of this operator, V = TV , will be a solution to Problem 6.3.
First prove that such a fixed point (solution) exists:

T is well-defined: By Weierstrass’s Theorem maximization on (5.7) has a
solution– maximizing a continuous function over a compact set.
Recall G (x) is a nonempty and continuous correspondence by Assumption 6.1
and U (x , y) and V (y) are continuous by hypothesis.
Thus Berge’s Maximum Theorem implies max

y∈G(x)
{U(x , y) + βV (y)} is

continuous in x , thus TV (x) ∈ C (X ) and T maps C (X ) into itself.
T satisfies Blackwell’s sufficient conditions for a contraction.
Thus a unique fixed point V ∈ C(X ) to (5.7) exists and is also the unique
solution to Problem 6.3.
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Proofs of the Main Dynamic Programming Theorems* Proofs of Theorems

Proof of Existence Theorem III

Now consider the maximization in Problem 6.3.
Weierstrass’s Theorem once more: y ∈ G (x) achieving the maximum exists
since U and V are continuous and G (x) is compact-valued.
This defines the set of maximizers Π (x) for Problem 6.3.
Let x∗ = (x0, x

∗
1 , ...) with x∗t+1 ∈ Π (x∗t ) for all t ≥ 0.

Then from the Equivalence of Values and Principle of Optimality Theorems,
x∗ is also an optimal plan for Problem 6.2. �

Additional result that follows from second version: Correspondence of
maximizing values

Π : X ⇒ X .

is a upper hemi-continuous and compact-valued correspondence by Theorem
of the Maximum.
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Proofs of the Main Dynamic Programming Theorems* Proofs of Theorems

Proof of Concavity Theorem I

C (X ): set of continuous (and bounded) functions over the compact set X .
C′(X ) ⊂ C(X ): set of bounded, continuous, (weakly) concave functions on
X .
C′′(X ) ⊂ C′(X ): set of strictly concave functions.
C′(X ) is a closed subset of the complete metric space C(X ), but C′′(X ) is
not a closed subset.
Let T be as defined in (5.7).
Since T is a contraction, it has a unique fixed point in C (X ).
By the Applications of Contraction Mappings Theorem, proving that
T [C′(X )] ⊂ C′′(X ) ⊂ C′ (X ) would be sufficient to establish that this unique
fixed point is in C′′ (X ) and hence the value function is strictly concave.
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Proofs of the Main Dynamic Programming Theorems* Proofs of Theorems

Proof of Concavity Theorem II

Let V ∈ C′(X ) and for x ′ 6= x ′′ and α ∈ (0, 1), let

xα ≡ αx ′ + (1− α)x ′′.

Let y ′ ∈ G (x ′) and y ′′ ∈ G (x ′′) be solutions to Problem 6.2 with state
vectors x ′ and x ′′. This implies:

TV (x ′) = U (x ′, y ′) + βV (y ′) and
TV (x ′′) = U (x ′′, y ′′) + βV (y ′′) . (5.8)

In view of Assumption 6.3 (that G is convex valued)
yα ≡ αy ′ + (1− α) y ′′ ∈ G (xα), so that

TV (xα) ≥ U(xα, yα) + βV (yα),

> α [U (x ′, y ′) + βV (y ′)]

+(1− α)[U (x ′′, y ′′) + βV (y ′′)]

= αTV (x ′) + (1− α)TV (x ′′),
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Proof of Concavity Theorem III

The first line follows by the fact that yα ∈ G (xα) is not necessarily the
maximizer, the second uses Assumption 6.3 (strict concavity of U), and the
third the definition introduced in (5.8).
Thus for any V ∈ C′(X ), TV is strictly concave, thus T [C′(X )] ⊂ C′′(X ).
Then the Theorem Applications of Contraction Mappings implies that unique
fixed point V ∗ is in C′′ (X ), and hence it is strictly concave. �
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Proofs of the Main Dynamic Programming Theorems* Proofs of Theorems

Proof of Corollary to the Existence Theorem

Assumption 6.3 implies that U (x , y) is concave in y : thus Concavity
Theorem implies V (y) is strictly concave in y .
Sum of a concave function and a strictly concave function is strictly concave,
thus the right-hand side of Problem 6.3 is strictly concave in y .
Since G (x) is convex for each x ∈ X (again Assumption 6.3), there exists a
unique maximizer y ∈ G (x) for each x ∈ X .
Thus the policy correspondence Π (x) is single-valued, thus a function, and
can thus be expressed as π (x).
Since Π (x) is upper hemi-continuous as observed above, so is π(x).
An upper hemi-continuous function is continuous, thus the corollary follows.�
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Proof of Increasing Value Theorem

C′(X ) ⊂ C(X ): set of bounded, continuous, nondecreasing functions on X .
C′′(X ) ⊂ C′(X ): set of strictly increasing functions.
Since C′(X ) is a closed subset of the complete metric space C(X ) the
Applications of Contraction Mappings Theorem implies:

if T [C′(X )] ⊂ C′′(X ), then V , the fixed point to (5.7) is in C′′ (X ), and
therefore, it is a strictly increasing function.

To see that this is the case, consider any V ∈ C′ (X ).
Assumption 6.4 implies, maxy∈G(x) {U (x , y) + βV (y)} is strictly increasing.
Thus TV ∈ C′′ (X ). �
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Proofs of the Main Dynamic Programming Theorems* Proofs of Theorems

Proof of Differentiability of Value Theorem I

From the Corollary to the Existence Theorem, Π (x) is single-valued, thus a
function that can be represented by π (x).
By hypothesis, π(x0) ∈ IntG (x0) and from Assumption 6.2 G is continuous.
Therefore, there exists a neighborhood N (x0) of x0 such that π(x0) ∈
IntG (x), for all x ∈ N (x0).
Define W (·) on N (x0) by

W (x) = U (x , π(x0)) + βV (π(x0)) .

In view of Assumptions 6.3 and 6.5, the fact that V [π(x0)] is a number
(independent of x), and the fact that U is concave and differentiable, W (·)
is concave and differentiable.
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Proofs of the Main Dynamic Programming Theorems* Proofs of Theorems

Proof of Differentiability of Value Theorem II

Moreover, since π(x0) ∈ G (x) for all x ∈ N (x0):

W (x) ≤ max
y∈G(x)

{U(x , y) + βV (y)} = V (x), for all x ∈ N (x0) (5.9)

with equality at x0.
Since V (·) is concave, −V (·) is convex, and by a standard result in convex
analysis, it possesses subgradients.
Moreover, any subgradient p of −V at x0 must satisfy for all x ∈ N (x0) ,

p · (x − x0) ≥ V (x)− V (x0) ≥W (x)−W (x0),

The first inequality uses the definition of a subgradient and the second that
W (x) ≤ V (x), with equality at x0 as in (5.9).
Thus every subgradient p of −V is also a subgradient of −W .
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Proof of Differentiability of Value Theorem III

Since W is differentiable at x0, its subgradient p must be unique, and
another standard result in convex analysis implies that any convex function
with a unique subgradient at an interior point x0 is differentiable at x0.
This establishes that −V (·), thus V (·), is differentiable as desired.
The expression for the gradient (3.3) is derived in detail below.
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Applications of Stationary Dynamic Programming

Section 6

Applications of Stationary Dynamic Programming
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Applications of Stationary Dynamic Programming Euler Equations

Subsection 1

Euler Equations

Ömer Özak (SMU) Economic Growth Macroeconomics II 79 / 147



Applications of Stationary Dynamic Programming Euler Equations

Basic Equations I

Recall from Problem 6.3,

Problem 6.3 :

V (x) = sup
y∈G(x)

{U(x , y) + βV (y)} , for all x ∈ X , (6.1)

and assume Assumptions 6.1-6.5 hold (From Theorem 6.4, the maximization
problem in (6.1) is strictly concave and from Theorem 6.6 the maximand is
also differentiable).
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Applications of Stationary Dynamic Programming Euler Equations

Basic Equations II

For any interior solution y ∈ IntG (x), the first-order conditions are necessary
and sufficient for an optimum (taking V (·) as given). In particular, (optimal)
solutions can be characterized by the following convenient Euler equations:

DyU(x , y∗) + βDV (y∗) = 0, (6.2)

which are sufficient to solve for the optimal policy, y∗.
The equivalent Envelope Theorem for dynamic programming: differentiate
(6.1) with respect to x to obtain

DV (x) = DxU(x , y∗). (6.3)
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Applications of Stationary Dynamic Programming Euler Equations

Basic Equations III

Using the fact that y∗ = π(x), and that DxV (y) = DxU(π(x), π(π(x))),
equation (6.2) can be expressed as follows

DyU(x , π(x)) + βDxU(π(x), π(π(x))) = 0. (6.4)

DxU: gradient vector of U with respect to its first K arguments,
DyU: gradient with respect to the second K arguments.

Intuition: This equation is intuitive; it requires the sum of the marginal gain
today from increasing y and the discounted marginal gain from increasing y
on the value of all future returns to be equal to zero.
Euler equation is not sufficient for optimality. It is necessary to have a
transversality condition. It is important in infinite-dimensional problems,
because it ensures that there are no beneficial simultaneous changes in an
infinite number of choice variables. In the general case,

lim
t→∞

βtDxU(x∗t , x
∗
t+1) · x∗t = 0. (6.5)
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Basic Equations IV

Simpler and more transparent when both x and y are scalars; (6.2) becomes

∂U(x , y∗)

∂y
+ βV ′ (y∗) = 0, (6.6)

Intuitive: sum of marginal gain today from increasing y and the discounted
marginal gain from increasing y on the value of all future returns to be equal
to zero.

Optimal Growth Example: U decreasing in y and increasing in x
(6.6) requires current cost of increasing y to be compensated by higher values
tomorrow.
I.e. current cost of reducing consumption must be compensated by higher
consumption tomorrow.

As in (6.2), value of higher consumption in (6.6) is expressed in terms of
unknown V ′ (y∗).
Use the one-dimensional version of (6.3) to find:

V ′ (x) =
∂U(x , y∗)

∂x
. (6.7)
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Basic Equations V

Combining (6.7) with (6.6):

∂U(x , π (x))

∂y
+ β

∂U(π (x) , π (π (x)))

∂x
= 0

Alternatively:
∂U(xt , x

∗
t+1)

∂xt+1
+ β

∂U(x∗t+1, x
∗
t+2)

∂xt+1
= 0. (6.8)

But this Euler equation is not sufficient for optimality.
Also need the transversality condition: essential in infinite-dimensional
problems, makes sure there are no beneficial simultaneous changes in an
infinite number of choice variables.
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Basic Equations VI

In general, transversality condition takes the form:

lim
t→∞

βtDxtU(x∗t , x
∗
t+1) · x∗t = 0, (6.9)

where “ ·” denotes the inner product operator.
One-dimensional case:

lim
t→∞

βt ∂U(x∗t , x
∗
t+1)

∂xt
· x∗t = 0. (6.10)

I.e., product of the marginal return from x times the value of this state
variable does not increase asymptotically faster than 1/β.
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Necessity and Sufficiency of Euler Equations and
Transversality Condition

Theorem 6.10 (Euler Equations and the Transversality Condition)
Let X ⊂ RK

+, and suppose that Assumptions 6.1-6.5 hold. Then a sequence{
x∗t+1

}∞
t=0, with x∗t+1 ∈ IntG (x∗t ), t = 0, 1, . . . , is optimal for Problem 2 given x0,

if and only if it satisfies (6.4) and (6.5).

Note: A stronger version applies even when the problem is nonstationary.
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Proof of Theorem: Sufficiency of Euler Equations and
Trasversality Condition II

From Assumptions 6.2 and 6.5, U is continuous, concave, and differentiable.
By concavity,

—U(x∗)−—U(x) ≡ ∆x ≥ lim
T→∞

T∑
t=0

βt [DxU(x∗t , x
∗
t+1) · (x∗t − xt)

+DyU(x∗t , x
∗
t+1) · (x∗t+1 − xt+1)]

for any x ∈Φ(x0).
Using x∗0 = x0 and rearranging terms

∆x ≥

lim
T→∞

T∑
t=0

βt

[
DyU(x∗t , x

∗
t+1)

+βDxU(x∗t+1, x
∗
t+2)

]
·
(

x∗t+1
−xt+1

)
− lim

T→∞
βTDxU(x∗T+1, x

∗
T+2) · x∗T+1

+ lim
T→∞

βTDxU(x∗T+1, x
∗
T+2) · xT+1).
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Proof of Theorem: Sufficiency of Euler Equations and
Trasversality Condition III

Since x∗ satisfies (6.4), the terms in first line are all equal to zero.
Moreover, since it satisfies (6.5), the second line is also equal to zero.
From Assumption 6.4, U is increasing in x , i.e., DxU ≥ 0 and x ≥ 0, so the
last term is nonnegative, establishing that ∆x ≥ 0 for any x ∈Φ(x0).
Consequently, x∗ yields higher value than any feasible x ∈Φ(x0) and is
therefore optimal.
Proof of necessity is similar (see book).
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Subsection 2

Optimal Growth
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Applications of Stationary Dynamic Programming Optimal Growth

Problem of Optimal Growth I

Let there be a normative representative agent who maximizes her utility

∞∑
t=0

βtu(ct) s.t. kt+1 ≤ f (kt) + (1− δ)kt − ct (6.11)

ct ≥ 0, kt ≥ 0, k0 is given.

Let us impose structure on this problem, so that we can apply our newly
learned theorems.

Assumption 3’

u : [c ,∞)→ R is continuously differentiable and strictly concave for c ∈ [0,∞).
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Problem of Optimal Growth II

Other assumptions:
u(·) is Neoclassical, i.e. continuous, strictly concave and strictly increasing.
u : R+ → R+.
f (kt) is also Neoclassical.
β ∈ (0, 1).

Question: Are there capital and consumption paths, {kt , ct}∞t=0, that maximize
social welfare?
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Problem of Optimal Growth II

Notice that since u(·) is strictly increasing, restriction holds under equality, that is
kt+1 = f (kt) + (1− δ)kt − ct .

Dynamic Programming Formulation: Let kt = k = x , k ′ = kt+1 = y so that k ′ is
the control variable and k is the state variable.

V (k) = sup
k′∈G(k)

u(f (k) + (1− δ)k − k ′) + βV (k ′)

where G (k) = {k ′ ∈ R+ : 0 ≤ k ′ ≤ f (k) + (1− δ)k}.

We have the tools to show that the solution to this Dynamic Programming
Problem is the solution to the central planner problem.
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Problem of Optimal Growth III

Assumption 6.1
G (k) is nonempty for all k ≥ 0.
Assumption holds since G (k) = [0, f (k) + (1− δ)k] and {0} ⊆ G (k) 6= ∅.
Moreover, limT→∞

∑T
t=0 β

tu(c) < +∞. To see this, notice that
kt ∈ [0,max{k∗s , k0}], which is compact. Since u is continuous and strictly
increasing,

u(c) = u(f (k) + (1− δ)k − k ′) < u(f (k) + (1− δ)k) ≤ ū,

then

lim
T→∞

T∑
t=0

βtu(c) ≤
∞∑
t=0

βt ū =
ū

1− β
.

Solution of the social planner is a solution of the Dynamic Programming
Problem (Theorem 6.1 and 6.2). Then

V (k) = sup
k′∈[0,f (k)+(1−δ)k]

u(f (k) + (1− δ)k − k ′) + βV (k ′).
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Problem of Optimal Growth IV

Assumption 6.2
kt ∈ [0,max{k∗s , k0}], which is compact and convex.
G(k) = [0, f (k) + (1− δ)k] is nonempty for all k ≥ 0. It is also bounded and
closed (compact).
G(k) is continuous.

G(k) is upper-hemicontinuous: Any sequence {kn, k ′n} s.t. kn → k,
k
′
n ∈ [0, f (kn) + (1− δ)kn] , and k

′
n → k ′, then k ′ ∈ [0, f (k) + (1− δ)k].

G(k) is lower-hemicontinuous: For any (k, k ′) and {kn} s.t. kn → k there exists
{k ′n} s.t. {k ′n ∈ G(kn)} and k

′
n → k ′.

In this case, XG =
{

(k, k ′) ∈ R2
+ : k ′ ∈ G(k)

}
. Since u : X → R is

continuous, and c = f (k) + (1− δ)k − k ′, then u : XG → R is continuous.
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Problem of Optimal Growth V

Assumption 6.3
G (k) is convex and we assumed u(·) is strictly concave.
Assumption 6.4
Since f (k) is Neoclassical, f

′
(k) > 0. If k1 ≤ k2, then

f (k1) + (1− δ)k1 ≤ f (k2) + (1− δ)k2, then G (k1) ⊆ G (k2).
u(f (k) + (1− δ)k − k ′) is clearly increasing in k , since u(·) is strictly
increasing as well as f (k) + (1− δ)k .
Assumption 6.5
Since f (·) and u(·) are twice differentiable, they are continuously
differentiable.

Ömer Özak (SMU) Economic Growth Macroeconomics II 95 / 147



Applications of Stationary Dynamic Programming Optimal Growth

Problem of Optimal Growth VI

We can apply Theorems 6.1-6.6!

Proposition

There exists a unique value function such that

V (k) = sup
{kt}∞t=0

∞∑
t=0

βtu(ct)

s.t. ct = f (kt) + (1− δ)kt − kt+1

k0 = k

By strict concavity, there exists a unique policy function π(k) such that
k∗t+1 = π(k∗t ), k∗0 = k0, attains the maximum value V (k0). We also know that
V (k) is strictly increasing, strictly concave, and differentiable.
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Problem of Optimal Growth VII

One can show that π(k) = s(k) = f (k) + (1− δ)k − c(k) is non-decreasing
in k .
Euler Equation

Dyu(x , π(x)) + βDxu(π(x), π(π(x))) = 0
u′(c)(−1) + βV ′(k ′) = 0

u′(c) = βV ′(k ′).

Envelope Theorem

DxV = Dxu(x , π(x))

V ′(k) = u′(c)(f ′(k) + (1− δ))

V ′(k ′) = u′(c ′)(f ′(k ′) + (1− δ))
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Problem of Optimal Growth VIII

Then,

u′(c) = βu′(c ′)(f ′(k ′) + (1− δ)).

Transversality Condition

lim
t→∞

βtDxu(x∗t , π(x∗t ))x∗t = 0

lim
t→∞

βt [f ′(kt) + (1− δ)] u′(ct)kt = 0

In steady state, c∗t = c∗t+1, then

1 = β[f
′
(k∗) + (1− δ)] (6.12)

f
′
(k∗) =

1− β(1− δ)

β
.

Then, there exists a unique k∗ > 0. The form of the utility function does not
affect k∗. Using the implicit function theorem, k∗ = k(β, δ), and

k∗β > 0 k∗δ < 0.
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Problem of Optimal Growth IX

c∗ = f (k∗)− δk∗. We know that max c∗is such that f ′(k∗g ) = δ. In this case,

δ +
1− β
β

= f ′(k∗) > f ′(k∗g ) = δ

=⇒ k∗ < k∗g ,

which is called modified golden rule.

Proposition

In the neoclassical optimal growth model specified in (6.11) with standard
assumptions on the production function and Assumption 3′, there exists a unique
steady-state capital-labor ratio k∗ given by (6.12), and starting from any initial
k0 > 0, the economy monotonically converges to this unique steady state, i.e., if
k0 < k∗, then the equilibrium capital stock sequence kt ↑ k∗ and if k0 > k∗, then
the equilibrium capital stock sequence kt ↓ k∗.
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Problem of Optimal Growth X

Proposition

c (k) is nondecreasing. Moreover, if k0 < k∗, then the equilibrium consumption
sequence ct ↑ c∗ and if k0 > k∗, then ct ↓ c∗, where c∗ is given by

c∗ = f (k∗)− δk∗.

Optimal growth model very tractable: can incorporate population growth and
technological change as in Solow model.
No immediate counterpart of saving rate, depends on the utility function, and
steady state capital-labor ratio and steady state income do not depend on
saving rate anyway.
Results concerning the convergence of optimal growth model are sometimes
referred to as the “Turnpike Theorem”.
Suppose that the economy ends at some date T > 0.
As T →∞, {kt}Tt=0 would become arbitrarily close to k∗ as defined by
(6.12), but in the last few periods would sharply decline to satisfy
transversality condition.
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Turnpike dynamics in a finite-horizon (T -periods)
neoclassical growth model starting with initial capital-labor
ratio k0.
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Example: Optimal Growth I

Consider the following optimal growth, with log preferences, Cobb-Douglas
technology and full depreciation of capital stock

max
{ct ,kt+1}∞t=0

∞∑
t=0

βt ln ct

subject to
kt+1 = kαt − ct

k0 = k0 > 0.

Canonical examples which admits an explicit-form characterization.
Set up the maximization problem in its recursive form as

V (x) = max
y≥0
{ln (xα − y) + βV (y)} ,

with x corresponding to today’s capital stock and y to tomorrow’s capital
stock.
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Example: Optimal Growth II

Objective is to find the policy function y = π (x).
This problem satisfies Assumptions 6.1-6.5 (only non-obvious feature is
whether x and y indeed belong to a compact set).
Consequently, Theorems apply and in particular, since V (·) is differentiable,
the Euler equation (6.4) implies

1
xα − y

= βV ′ (y) .

Envelope condition, (6.3) gives:

V ′ (x) =
αxα−1

xα − y
.
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Example: Optimal Growth III

Using the notation y = π (x) and combining:

1
xα − π (x)

= β
απ (x)α−1

π (x)α − π (π (x))
for all x ,

Functional equation in a single function, π (x).
No straightforward ways of solving functional equations; guess-and-verify type
methods are most fruitful. Conjecture:

π (x) = axα. (6.13)

Substituting for this in the previous expression:

1
xα − axα

= β
αaα−1xα(α−1)

aαxα2 − a1+αxα2
,

=
β

a

α

xα − axα
,
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Example: Optimal Growth IV

Implies with the policy function (6.14), a = βα satisfies this equation.
From the Corollary to the Existence Theorem there is a unique policy
function. Since

π (x) = βαxα

satisfies the necessary and sufficient conditions, it must be the unique policy
function.
Thus the law of motion of the capital stock is

kt+1 = βαkαt (6.14)

Optimal consumption level is

ct = (1− βα) kαt .
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Example: Intertemporal Consumption Choice I

Infinitely-lived consumer with instantaneous utility function over consumption
u (c), where u : R+ → R is strictly increasing, continuously differentiable and
strictly concave.
Discounts the future exponentially with the constant discount factor
β ∈ (0, 1).
Faces a certain (nonnegative) labor income stream of {wt}∞t=0, and starts life
with a given amount of assets a0.
Receives a constant net rate of interest r > 0 on his asset holdings (gross
rate of return is 1 + r).
Suppose that wages are constant, that is, wt = w .

Ömer Özak (SMU) Economic Growth Macroeconomics II 106 / 147



Applications of Stationary Dynamic Programming Optimal Growth

Example: Intertemporal Consumption Choice II

Utility maximization problem of the individual can be written as

max
{ct ,at}∞t=0

∞∑
t=0

βtu (ct)

subject to:
at+1 = (1 + r) (at + w − ct) ,

with a0 > 0 given.
In addition,impose assumption that at ≥ 0 for all t.
Common application of dynamic optimization, but notice feasible set for
state variable at is not necessarily compact.
Strengthen theorems, or make use of the economic structure of the model.
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Example: Intertemporal Consumption Choice III

In particular, choose some ā and limit at to lie in the set [0, ā], solve the
problem and then verify that indeed at is in the interior of this set.
In this example, choose ā ≡ a0 + w/r and assume it to be finite.
Remarks:

1 Budget constraint could have been written as at+1 = (1 + r) at + w − ct .
Difference is timing of interest payments: at as asset holdings at the beginning
of time t or at the end of time t.

2 Flow budget constraint does not capture all the constraints
e.g. can satisfy flow budget constraint, but run assets position to −∞.

Focus on the case where a0 <∞ and w/r <∞.
Consumption can be expressed as

ct = at + w − (1 + r)−1 at+1.
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Example: Intertemporal Consumption Choice IV

Recursive formulation with state variable at : denoting current value of the
state variable by a and its future value by a′:

V (a) = max
a′∈[0,ā]

{
u
(
a + w − (1 + r)−1 a′

)
+ βV (a′)

}
.

Clearly u (·) is strictly increasing in a, continuously differentiable in a and a′

and is strictly concave in a.
Moreover, since u (·) is continuously differentiable in a ∈ (0, ā) and the
individual’s wealth is finite, V (a0) is also finite.
Thus all Theorems apply and imply that V (a) is differentiable and a
continuous solution a′ = π (a) exists.
Moreover, we can use the Euler equation (6.2) or (6.4):

u′
(
a + w − (1 + r)−1 a′

)
= (6.15)

u′ (c) = β (1 + r)V ′ (a′) .
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Example: Intertemporal Consumption Choice V

“Consumption Euler”: captures economic intuition of dynamic programming,
reduces complex infinite-dimensional optimization problem to one of
comparing today to “tomorrow”.
Only difficulty here is tomorrow itself will involve a complicated maximization
problem.
But again envelope condition, (6.3):

V ′ (a′) = u′ (c ′) ,

where c ′ refers to next period’s consumption.
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Example: Intertemporal Consumption Choice VI

Consumption Euler equation becomes

u′ (c) = β (1 + r) u′ (c ′) . (6.16)

I.e., marginal utility of consumption today must be equal to the marginal
utility of consumption tomorrow multiplied by the product of the discount
factor and the gross rate of return.
Since we have assumed that β and (1 + r) are constant:

if r = β−1 − 1 c = c ′ and consumption is constant over time
if r > β−1 − 1 c < c ′ and consumption increases over time
if r < β−1 − 1 c > c ′ and consumption decreases over time.

(6.17)

Note no reference to the initial level of asset holdings a0 and w .
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Example: Intertemporal Consumption Choice VII

“Slope” of the optimal consumption path is independent of the wealth of the
individual.
To determine the level of initial consumption use the transversality condition
and the intertemporal budget constraint.
May also verify that whenever r ≤ β−1 − 1, at ∈ (0, ā) for all t (so artificial
bounds on asset holdings have no bearing on the results).
What if instead there is an arbitrary sequence of wages {wt}∞t=0?
Assume no uncertainty: all of the results derived, in particular, the
characterization in (6.17), still apply.
But additional care is necessary since budget constraint, i.e. correspondence
G , is no longer “autonomous” (independent of time).
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Example: Intertemporal Consumption Choice VIII

Two approaches are possible
1 Introduce an additional state variable, e.g. ht =

∑∞
s=0 (1 + r)−s wt+s

Budget constraint becomes:

at+1 + ht+1 ≤ (1 + r) (at + ht − ct) ,

Similar analysis can be applied with the value function over two state variables,
V (a, h).
Economically meaningful, but does not always solve our problems: ht is now a
state variable that has its own non-autonomous evolution and in many problems
it is difficult to find an economically meaningful additional state variable.

2 One can directly apply the Theorem on the sufficiency of the Euler equations
and Transversality condition, even when the Dynamic Programming Theorems
do not hold.

Result: exact shape of this labor income sequence has no effect on the slope
or level of the consumption profile.
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Subsection 3

Relating to the sequence problem
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Dynamic Programming Versus the Sequence Problem I

Return to the sequence problem.
Suppose that x is one dimensional and that there is a finite horizon T :

max
{xt+1}Tt=0

T∑
t=0

βtU(xt , xt+1)

subject to xt+1 ≥ 0 with x0 as given.
Moreover, let U(xT , xT+1) be the last period’s utility, with xT+1 as the state
variable left after the last period (“salvage value” for example).
Finite-dimensional optimization problem: can simply look at first-order
conditions.
Moreover, assume optimal solution lies in the interior of the constraint set,
i.e., x∗t > 0.
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Dynamic Programming Versus the Sequence Problem II

First-order conditions are exactly as the above Euler equation: for any
0 ≤ t ≤ T − 1,

∂U(x∗t , x
∗
t+1)

∂xt+1
+ β

∂U
(
x∗t+1, x

∗
t+2
)

∂xt+1
= 0,

For xT+1, we have the following boundary condition

x∗T+1 ≥ 0, and βT ∂U(x∗T , x
∗
T+1)

∂xT+1
x∗T+1 = 0. (6.18)

Intuitively, x∗T+1 should be positive only if an interior value of it maximizes
the salvage value at the end.
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Dynamic Programming Versus the Sequence Problem III

Example: Optimal growth problem,

U (xt , xt+1) = u (f (xt) + (1− δ) xt − xt+1) ,

with xt = kt and xt+1 = kt+1.
Suppose world comes to an end at date T . Then at T ,

∂U(x∗T , x
∗
T+1)

∂xT+1
= −u′ (c∗T ) < 0.

From (6.18) and the fact that U is increasing in its first argument
(Assumption 6.4), an optimal path must have k∗T+1 = x∗T+1 = 0.
Intuitively: no capital left at the end of the world, if it were left, utility could
be increased by consuming them either at the last date or earlier.
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Dynamic Programming Versus the Sequence Problem IV

Heuristically, we can derive the transversality condition as an extension of
condition (6.18) to T →∞:

lim
T→∞

βT ∂U(x∗T , x
∗
T+1)

∂xT+1
x∗T+1 = 0.

Moreover, we have the Euler equation

∂U(x∗T , x
∗
T+1)

∂xT+1
+ β

∂U(x∗T+1, x
∗
T+2)

∂xT+1
= 0.

Substituting this relationship into the previous equation:

− lim
T→∞

βT+1 ∂U(x∗T+1, x
∗
T+2)

∂xT+1
x∗T+1 = 0.
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Dynamic Programming Versus the Sequence Problem V

Canceling the negative sign, and without loss of any generality, changing the
timing:

lim
T→∞

βT ∂U(x∗T , x
∗
T+1)

∂xT
x∗T = 0,

which is exactly (6.5).
This also highlights that alternatively we could have had the transversality
condition as

lim
T→∞

βT ∂U(x∗T , x
∗
T+1)

∂xT+1
x∗T+1 = 0,

Thus no unique transversality condition, but boundary condition at infinity to
rule out variations that change an infinite number of control variables.
Different boundary conditions at infinity can play this role.
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Section 7

Nonstationary Infinite-Horizon Optimization
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Nonstationary Infinite-Horizon Optimization

Nonstationary Problems

Let us now return to Problem 6.1.
Let us again define the set of feasible sequences or plans starting with an
initial value xt at time t as:

Φ(t, xt) = {{xs}∞s=t : xs+1 ∈ G (s, xs), for s = t, t + 1, ...} .

Notice that this implies that Φ(0, x̃) is not necessarily equal to Φ(t, x̃) for
t > 0.
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Subsection 1

Assumptions
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Assumptions I

Assumption 6.1N

G (t, x) is nonempty for all x ∈ X and t ∈ Z+ and U(t, x , y) is uniformly bounded
(from above); that is, there exists M <∞ such that U(t, x , y) ≤ M for all
t ∈ Z+, x ∈ X , and y ∈ G (t, x).

Assumption 6.2N

X is a compact subset of RK , G is nonempty-valued, compact-valued and
continuous. Moreover, U : XG → R is continuous in x and y , where
XG = {(t, x , y) ∈ Z+ × X × X : y ∈ G (t, x)}.
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Assumptions II

Assumption 6.3N

U is strictly concave: for any α ∈ (0, 1) and any (t, x , y), (t, x ′, y ′) ∈ XG

U (t, αx + (1− α)x ′, αy + (1− α)y ′)) ≥ αU(t, x , y) + (1− α)U(t, x ′, y ′),

and if x 6= x ′,

U (t, αx + (1− α)x ′, αy + (1− α)y ′)) > αU(t, x , y) + (1− α)U(t, x ′, y ′).

Moreover, G is convex: for any α ∈ [0, 1], and x , x ′ ∈ X , whenever y ∈ G (t, x)
and y ′ ∈ G (t, x ′)

αy + (1− α)y ′ ∈ G (t, αx + (1− α)x ′) .
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Assumptions III

Assumption 6.4N

For each t ∈ Z+ and y ∈ X , U(t, x , y) is strictly increasing in each of x , and G is
monotone in x in the sense that x ≤ x ′ implies G (t, x) ⊂ G (t, x ′) for any t ∈ Z+.

Assumption 6.5N

U is continuously differentiable in x and y on the interior of its domain XG .
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Main Results

Theorem 6.11 (Existence of Solutions)

Suppose Assumptions 6.1N and 6.2N hold. Then there exists a unique function
V ∗ : Z+ × X → R that is a solution to Problem 6.1. V ∗ is continuous in x and
bounded. Moreover, for any x0 ∈ X , an optimal plan x∗[x0, 0] ∈ Φ(0, x0) exists.

Theorem 6.12 (Euler Equations and the Transversality Condition)

Let X ⊂ RK
+ , and suppose that Assumptions 6.1N–6.5N hold. Then a sequence

{x∗t+1}∞t=0, with x∗t+1 ∈ IntG (t, x∗t ), t = 0, 1, ... , is optimal for Problem 6.1 given
x0 if and only if it satisfies the Euler equation

DyU(t, x∗t , x
∗
t+1) + βDxU(t + 1, x∗t+1, x

∗
t+2) = 0, (7.1)

and the transversality condition

lim
t→∞

βtDxU(t, x∗t , x
∗
t+1)x∗t = 0. (7.2)
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Subsection 2

Competitive Growth
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Competitive Equilibrium Growth I

Second Welfare Theorem: optimal growth path also corresponds to an
equilibrium growth path (can be decentralized as a competitive equilibrium).
Most straightforward competitive allocation: symmetric one where all
households, each with u (c), make the same decisions and receive the same
allocations.
Each household starts with an endowment of capital stock K0.
Mass 1 of households.
Large number of competitive firms, which are modeled using the aggregate
production function.
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Competitive Equilibrium Growth II

Definition A competitive equilibrium consists of paths of consumption, capital
stock, wage rates and rental rates of capital, {Ct ,Kt ,wt ,Rt}∞t=0,
such that the representative household maximizes its utility given
initial capital stock K0 and the time path of prices {wt ,Rt}∞t=0, and
the time path of prices {wt ,Rt}∞t=0 is such that given the time path
of capital stock and labor {Kt , Lt}∞t=0 all markets clear.

Households rent their capital to firms and receive the competitive rental price

Rt = f ′ (kt) ,

Thus face gross rate of return for renting one unit of capital at time t in
terms of date t + 1 goods:

1 + rt+1 = f ′ (kt+1) + (1− δ) (7.3)
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Competitive Equilibrium Growth III

In addition, to capital income, households receive wage income

wt = f (kt)− kt f
′ (kt) .

Maximization problem of the representative household:

max
{ct ,at}∞t=0

∞∑
t=0

βtu (ct)

subject to the flow budget constraint

at+1 = (1 + rt) at − ct + wt (7.4)
a0 > 0 given. (7.5)
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Competitive Equilibrium Growth IV

Set up of the problem in Dynamic Programming framework:

V (t, at) = sup
at+1∈G(t,at)

u((1 + rt)at + wt − at+1) + βV (t + 1, at+1),

where G (t, at) = {at+1 ∈ R : at+1 ≤ (1 + rt)at + wt}.
From now on at = x and at+1 = y .
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Competitive Equilibrium Growth V
Verifying Assumptions

Assumption 6.1N
G (t, x) 6= ∅, G (t, x) = (−∞, (1 + rt)x + wt ].
From (7.4),

at+k =
k−1∏
s=0

(1 + rt+s)at +
k−1∑
j=0

j∏
s=0

(1 + rt+s)(wt+j − ct+j).

Since u(ct) is increasing in ct , without any requirements, at+1 → −∞, which
is a contradiction because V (0, a0)→ +∞.
Hence, it is necessary to impose conditions on the bounds of at+1.
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Competitive Equilibrium Growth VI
Verifying Assumptions

Assumption 6.1N (cont...)
Liquidity constraints: at ≥ 0 for all t. The household cannot borrow.
Natural debt limit: level of at such that if household owes at and it never
consumes again, then it will be able to repay the debt. We impose at ≥ −B,
with 0 < B <∞. Then, it is necessary that limt→∞ at = −B.
Notice that given {rt ,wt}∞t=0, there is a maximum the household is able to
repay in its lifetime (or from any period t onwards). If the household does not
consume (cs = 0 for all s ≥ t) then

at+1

1 + rt
− wt

1 + rt
= at
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Competitive Equilibrium Growth VII
Verifying Assumptions

Assumption 6.1N (cont...)
Natural debt limit (cont...):

at+2

(1 + rt+1)(1 + rt)
− wt+1

(1 + rt+1)(1 + rt)
− wt

1 + rt
= at

...

at+T

T−1∏
s=0

1
1 + rt+s

−
T−1∑
s=0

s∏
j=0

1
1 + rt+j

wt+s = at .

Since the household must be able to repay, limT→∞ at+T ≥ 0, then

at ≥ −
∞∑
s=0

s∏
j=0

1
(1 + rt+j)

wt+s ≡ −W .

Assume that ∃W : W t ≤W ≤ ∞ for all t ≥ 0 (problem: if there is growth of
wages, wt is increasing and Wmay not be finite).
Assumption: at ∈ [−W ,W + a0]. In particular, if rt = r and wt = w for all t,
W = w

r
.
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Competitive Equilibrium Growth VII
Verifying Assumptions

Assumption 6.1N (cont...)
No-Ponzi Condition (NPC): limt→∞ at

∏t−1
s=0

1
1+rs

= 0. Dying without debts or
a way to ensure that same result as in A-D markets. The life time budget
constraint is equal to that in the A-D economy,

at

t−1∏
s=0

1
1 + rs

+
t−1∑
s=0

t∏
j=0

1
1 + rj

cs ≤ a0 +
t−1∑
s=0

t∏
j=0

1
1 + rj

ws

∞∑
s=0

t∏
j=0

1
1 + rj

cs ≤ a0 +
∞∑
s=0

t∏
j=0

1
1 + rj

w s .

Ömer Özak (SMU) Economic Growth Macroeconomics II 135 / 147



Nonstationary Infinite-Horizon Optimization Competitive Growth

Competitive Equilibrium Growth VIII
Verifying Assumptions

With any of those conditions, assumptions 6.1N-6.5N hold
Solution under Natural Debt Limit:

G(t, x) = [−W ,W + a0] is convex, non-empty, compact and continuous.
u(·) is continuous, differentiable, strictly increasing, strictly concave.
u(·) is uniformly bounded since

u((1+ rt)at +wt−at+1) < u((1+ rt)at +wt−(−W )) < u(W +a0 +W ) < +∞

and limT→∞
∑T

t=0 β
tu(W + a0 + W ) = ū

1−β
< +∞.
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Competitive Equilibrium Growth IX

Characterizing the solution:
the first order condition is

−u′((1 + rt)x + wt − y) + βV ′(t + 1, y) = 0.

Envelope theorem

V ′(t, x) = (1 + rt)u
′((1 + rt)x + wt − y)

Euler equation
u′(c∗t ) = β(1 + rt+1)u′(c∗t+1) (7.6)

Transversality condition

lim
t→∞

βt(1 + rt)u
′(c∗t )at = 0
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Competitive Equilibrium Growth IX

Notice that
ct = ct+1 iff β(1 + rt+1) = 1
ct > ct+1 iff β(1 + rt+1) < 1
ct < ct+1 iff β(1 + rt+1) > 1

where it does not depend on u, w , etc. Only on β and rt+1.
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Competitive Equilibrium Growth X

Also, from the Euler equation, equation (7.1), β(1 + rt)u
′(ct) = u′(ct−1) and

β(1 + rt−1)u′(ct−1) = u′(ct−2), then

u′(ct) =
1

β2(1 + rt)(1 + rt−1)
u′(ct−2)

= · · ·

u′(ct) = β−t
t−1∏
s=0

1
1 + rt−s

u′(c0), (7.7)

therefore

ct = (u′)
−1

(
β−t

t−1∏
s=0

1
1 + rt−s

u′(c0)

)
. (7.8)

In particular, if rt = r and wt = w for all t,

ct = (u′)
−1
(

[β(1 + r)]−t u′(c0)
)
.
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Competitive Equilibrium Growth XI

Working with the budget constraint, we know that

a∗t =
t−1∏
s=0

(1 + rs)a0 +
t−1∑
s=0

t−1∏
j=s

(1 + rj)(ws − c∗s ),

and using (7.7),

βtu′(ct)(1 + rt) =
t−1∏
s=1

1
1 + rs

u′(c0)

a∗t β
tu′(ct)(1 + rt) = a∗t

t−1∏
s=1

1
1 + rs

u′(c0).

For transversality condition to hold, we need that as t →∞ LHS→ 0. Notice
that this would be satisfied in No-Ponzi Condition since RHS is NPC. With
NDL Transversality implies NPC.
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Competitive Equilibrium Growth XII

Using the budget constraint again, it is true that

u′(ct)(1 + rt)β
ta∗t = (1 + r0)u′(c0)a0+

u′(c0)
t−1∏
s=1

1
1 + rs

t−1∑
s=0

t−1∏
j=s

(1 + rj)(ws − c∗s ),

and taking the limit as t →∞,

∞∑
s=0

s∏
j=0

1
1 + rj

c∗s = a0 +
∞∑
s=0

s∏
j=0

1
1 + rj

ws ,

which implicitly determines c0.
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Competitive Equilibrium Growth XIII

(cont...)
If rt = r and wt = w for all t,

∞∑
t=0

1
(1 + r)t+1 c

∗
t = a0 +

w

r
.

In particular, if β(1 + r) = 1, then

c0 = ra0 + w .

If β(1 + r) ≤ 1, then c0 ≥ c1 ≥ c2 ≥ . . . , so

a0 +
w

r
=

∞∑
t=0

ct
(1 + r)t+1 ≤ c0

r

c0 ≥ ra0 + w ,
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Competitive Equilibrium Growth XIII

(cont...)
and at any point of the time t, given at

at +
w

r
=

∞∑
s=t

cs
(1 + r)s+1 ≤ cs

r
≤ c0

r

at ≤ c0 − w

r

additionally, the flow budget constraint implies that

at − at−1 =r

(
at−1 +

w − ct
r

)
≤ 0

=⇒ at ≤at−1 ≤ · · · ≤ a0 < a0 + W̄

=⇒ at <a0 + W̄ .
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Competitive Equilibrium Growth XIV

Profit Maximization: Rt = f ′(kt) = rt + δ and wt = f (kt)− kt f
′(kt).

Closed economy and no government, so no lending/borrowing except
between households

Representative consumer =⇒ no aggregate borrowing/lending,
i.e., bt = 0 for all t ≥ 0, in equilibrium.

So, in equilibrium at = kt + bt = kt for all t ≥ 0.
Replacing these in the household budget constraint, we get

kt+1 = at+1 =(1 + rt)at + wt − ct

=(1 + f ′(kt)− δ)kt + f (kt)− kt f
′(kt)− ct
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Competitive Equilibrium Growth XV

Thus, the equilibrium evolution of capital is given by

kt+1 = f (kt) + (1− δ)kt − ct ,

which is the same as in the Solow model!
This implies that competitive equilibrium in this economy generates the same
paths as the optimal growth model:

Competitive Growth Optimal Growth

Euler equation u′(ct ) = β(1 + rt+1)u′(ct+1) u′(ct ) = β(1 + f ′(kt+1) − δ)u′(ct+1)

Transversality Condition limt→∞ βt (1 + rt )u′(ct )at = 0 limt→∞ βt (1 + f ′(kt ) − δ)u′(ct )kt = 0
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Competitive Equilibrium Growth XVI

First Welfare Theorem holds since competitive growth equilibrium is Pareto
Optimal.
Recall that the Golden Rule implies f

′
(k∗g ) = δ. In this case, in SS

f ′(k∗) = 1−β
β + δ. Since by assumption β < 1

f
′
(k∗g ) < f

′
(k∗)

k∗g > k∗,

so that the level of capital in steady state it is called Modified Golden Rule
level of capital.
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Conclusions

Dynamic programming techniques are not only essential for the study of
economic growth, but are widely used in many diverse areas of
macroeconomics and economics.
Number of applications of dynamic programming.
Assumed away a number of difficult technical issues.
Discounted problems, which are simpler than undiscounted problems.
Payoffs are bounded and the state vector x belongs to a compact subset of
the Euclidean space, X .

rules out many interesting problems, such as endogenous growth models,
where the state vector grows over time.
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