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Preliminaries Introduction

Foundations of Neoclassical Growth

Solow model: constant saving rate.

More satisfactory to specify the preference orderings of individuals
and derive their decisions from these preferences.

Enables better understanding of the factors that affect savings
decisions.

Enables to discuss the “optimality” of equilibria

Whether the (competitive) equilibria of growth models can be
“improved upon”.

Notion of improvement: Pareto optimality.
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Preliminaries Preliminaries

Preliminaries I

Consider an economy consisting of a unit measure of infinitely-lived
households.

I.e., an uncountable number of households: e.g., the set of households
H could be represented by the unit interval [0, 1].

Emphasize that each household is infinitesimal and will have no effect
on aggregates.

Can alternatively think of H as a countable set of the form
H = {1, 2, ...,M} with M = ∞, without any loss of generality.

Advantage of unit measure: averages and aggregates are the same

Simpler to have H as a finite set in the form {1, 2, ...,M} with M
large but finite.

Acceptable for many models, but with overlapping generations require
the set of households to be infinite.
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Preliminaries Preliminaries

Preliminaries II

How to model households in infinite horizon?

1 “infinitely lived” or consisting of overlapping generations with full

altruism linking generations→infinite planning horizon

2 overlapping generations→finite planning horizon (generally...).
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Preliminaries Preliminaries

Time Separable Preferences

Standard assumptions on preference orderings so that they can be
represented by utility functions.

In particular, each household i has an instantaneous utility function

ui (cit) ,

ui : R+→ R is increasing and concave and cit is the consumption of
household i in period t.

Note instantaneous utility function is not specifying a complete
preference ordering over all commodities—here consumption levels in
all dates.

Sometimes also referred to as the “felicity function”.

Two major assumptions in writing an instantaneous utility function
1 consumption externalities are ruled out.
2 overall utility is time separable.
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Preliminaries Infinite Horizon

Infinite Planning Horizon

Start with the case of infinite planning horizon.

Suppose households discount the future “exponentially”—or
“proportionally”.

Interpret ui (·) as a “Bernoulli utility function”.

Then preferences of household i at time t = 0 can be represented by
a von Neumann-Morgenstern expected utility function.

Thus household preferences at time t = 0 are

Ei
0

∞

∑
t=0

βt
i ui (cit) , (1)

where βi ∈ (0, 1) is the discount factor of household i .
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Preliminaries Infinite Horizon

Heterogeneity and the Representative Household

Ei
0 is the expectation operator with respect to the information set

available to household i at time t = 0.

So far index individual utility function, ui (·), and the discount factor,
βi , by “i”

Households could also differ according to their income processes. E.g.,
effective labor endowments of {eit}∞

t=0, labor income of {eitwt}∞
t=0.

But at this level of generality, this problem is not tractable.

Follow the standard approach in macroeconomics and assume the
existence of a representative household.
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Preliminaries Infinite Horizon

Time Consistency

Exponential discounting and time separability: ensure
“time-consistent” behavior.

A solution {xt}Tt=0 (possibly with T = ∞) is time consistent if:

whenever {xt}Tt=0 is an optimal solution starting at time t = 0,

{xt}Tt=t ′ is an optimal solution to the continuation dynamic
optimization problem starting from time t = t ′ ∈ [0,T ].
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Representative Household Representative Household

Challenges to the Representative Household

An economy admits a representative household if preference side can
be represented as if a single household made the aggregate
consumption and saving decisions subject to a single budget
constraint.

This description concerning a representative household is purely
positive

Stronger notion of “normative” representative household: if we can
also use the utility function of the representative household for welfare
comparisons.

Simplest case that will lead to the existence of a representative
household: suppose each household is identical.
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Representative Household Representative Household

Representative Household II

I.e., same β, same sequence {et}∞
t=0 and same

u (cit)

where u : R+→ R is increasing and concave and cit is the
consumption of household i .

Again ignoring uncertainty, preference side can be represented as the
solution to

max
∞

∑
t=0

βtu (ct) , (2)

β ∈ (0, 1) is the common discount factor and ct the consumption
level of the representative household.

Admits a representative household rather trivially.

Representative household’s preferences, (2), can be used for positive
and normative analysis.
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Representative Household A Negative Result

Representative Household III

If instead households are not identical but assume can model as if
demand side generated by the optimization decision of a
representative household...

More realistic, but:
1 The representative household will have positive, but not always a

normative meaning.
2 Models with heterogeneity: often do not lead to behavior that can be

represented as if generated by a representative household.

Theorem (Debreu-Mantel-Sonnenschein Theorem) Let ε > 0 be a
scalar and N < ∞ be a positive integer. Consider a set of
prices P ε =

{
p ∈ RN

+: pj/pj ′ ≥ ε for all j and j ′
}

and any
continuous function x : P ε → RN

+ that satisfies Walras’ Law
and is homogeneous of degree 0. Then there exists an
exchange economy with N commodities and H < ∞
households, where the aggregate demand is given by x (p)
over the set P ε.
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Representative Household A Negative Result

Representative Household IV

That excess demands come from optimizing behavior of households
puts no restrictions on the form of these demands.

E.g., x (p) does not necessarily possess a negative-semi-definite
Jacobian or satisfy the weak axiom of revealed preference
(requirements of demands generated by individual households).

Hence without imposing further structure, impossible to derive
specific x (p)’s from the maximization behavior of a single household.

Severe warning against the use of the representative household
assumption.

Partly an outcome of very strong income effects:

special but approximately realistic preference functions, and restrictions
on distribution of income rule out arbitrary aggregate excess demand
functions.
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Representative Household A Partial Positive Result

Gorman Aggregation

Recall an indirect utility function for household i , vi
(
p, y i

)
, specifies

(ordinal) utility as a function of the price vector p = (p1, ..., pN) and
household’s income y i .

vi
(
p, y i

)
: homogeneous of degree 0 in p and y .

Theorem (Gorman’s Aggregation Theorem) Consider an economy
with a finite number N < ∞ of commodities and a set H of
households. Suppose that the preferences of household i ∈ H
can be represented by an indirect utility function of the form

v i
(
p, y i

)
= ai (p) + b (p) y i , (3)

then these preferences can be aggregated and represented by
those of a representative household, with indirect utility

v (p, y) =
∫
i∈H

ai (p) di + b (p) y ,

where y ≡
∫
i∈H y idi is aggregate income.
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Representative Household A Partial Positive Result

Linear Engel Curves

Demand for good j (from Roy’s identity):

x ij
(
p, y i

)
= − 1

b (p)

∂ai (p)

∂pj
− 1

b (p)

∂b (p)

∂pj
y i .

Thus linear Engel curves.

“Indispensable” for the existence of a representative household.

Let us say that there exists a strong representative household if
redistribution of income or endowments across households does not
affect the demand side.

Gorman preferences are sufficient for a strong representative
household.

Moreover, they are also necessary (with the same b (p) for all
households) for the economy to admit a strong representative
household.

The proof is easy by a simple variation argument.
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Representative Household A Partial Positive Result

Importance of Gorman Preferences

Gorman Preferences limit the extent of income effects and enables
the aggregation of individual behavior.

Integral is “Lebesgue integral,” so when H is a finite or countable set,∫
i∈H y idi is indeed equivalent to the summation ∑i∈H y i .

Stated for an economy with a finite number of commodities, but can
be generalized for infinite or even a continuum of commodities.

Note all we require is there exists a monotonic transformation of the
indirect utility function that takes the form in (3)—as long as no
uncertainty.

Contains some commonly-used preferences in macroeconomics.
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Representative Household A Partial Positive Result

Example: Constant Elasticity of Substitution Preferences

A very common class of preferences: constant elasticity of
substitution (CES) preferences or Dixit-Stiglitz preferences.

Suppose each household denoted by i ∈ H has total income y i and
preferences defined over j = 1, ...,N goods

U i
(
x i1, ..., x iN

)
=

[
N

∑
j=1

(
x ij − ξ ij

) σ−1
σ

] σ
σ−1

, (4)

σ ∈ (0, ∞) and ξ ij ∈ [−ξ̄, ξ̄] is a household specific term, which
parameterizes whether the particular good is a necessity for the
household.

For example, ξ ij > 0 may mean that household i needs to consume a
certain amount of good j to survive.
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Representative Household A Partial Positive Result

Example II

If we define the level of consumption of each good as x̂ ij = x ij − ξ ij ,

the elasticity of substitution between any two x̂ ij and x̂ ij ′ would be
equal to σ.

Each consumer faces a vector of prices p = (p1, ..., pN), and we
assume that for all i ,

N

∑
j=1

pj ξ̄ < y i ,

Thus household can afford a bundle such that x̂ ij ≥ 0 for all j .

The indirect utility function is given by

v i
(
p, y i

)
=

[
−∑N

j=1 pjξ
i
j + y i

]
[
∑N

j=1 p
1−σ
j

] 1
1−σ

, (5)
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Representative Household A Partial Positive Result

Example III

Satisfies the Gorman form (and is also homogeneous of degree 0 in p
and y).

Therefore, this economy admits a representative household with
indirect utility:

v (p, y) =

[
−∑N

j=1 pjξj + y
]

[
∑N

j=1 p
1−σ
j

] 1
1−σ

y is aggregate income given by y ≡
∫
i∈H y idi and ξj ≡

∫
i∈H ξ ijdi .

The utility function leading to this indirect utility function is

U (x1, ..., xN) =

[
N

∑
j=1

(xj − ξj )
σ−1

σ

] σ
σ−1

. (6)

Preferences closely related to CES preferences will be key in ensuring
balanced growth in neoclassical growth models.
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Representative Household Normative Representative Household

Normative Representative Household

Gorman preferences also imply the existence of a normative
representative household.

Recall an allocation is Pareto optimal if no household can be made
strictly better-off without some other household being made worse-off.
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Representative Household Normative Representative Household

Existence of Normative Representative Household

Theorem (Existence of a Normative Representative Household)
Consider an economy with a finite number N < ∞ of
commodities, a set H of households and a convex aggregate
production possibilities set Y . Suppose that the preferences
of each household i ∈ H take the Gorman form,
v i
(
p, y i

)
= ai (p) + b (p) y i .

1 Then any allocation that maximizes the utility of the
representative household,
v (p, y) = ∑i∈H ai (p) + b (p) y , with y ≡ ∑i∈H y i , is
Pareto optimal.

2 Moreover, if ai (p) = ai for all p and all i ∈ H, then
any Pareto optimal allocation maximizes the utility of
the representative household.
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Representative Household Normative Representative Household

Proof of Theorem I

Represent a Pareto optimal allocation as:

max
{pj},{y i},{z j}

∑
i∈H

αiv i
(
p, y i

)
= ∑

i∈H
αi
(
ai (p) + b (p) y i

)
subject to

− 1

b (p)

(
∑
i∈H

∂ai (p)

∂pj
+

∂b (p)

∂pj
y

)
= z j ∈ Yj (p) for j = 1, ...,N

∑
i∈H

y i = y ≡
N

∑
j=1

pjz j

N

∑
j=1

pjωj = y ,

pj ≥ 0 for all j .

Ömer Özak Economic Growth Macroeconomics II 21 / 79



Representative Household Normative Representative Household

Proof of Theorem II

Here
{

αi
}
i∈H are nonnegative Pareto weights with ∑i∈H αi = 1 and

z j ∈ Yj (p) profit maximizing production of good j .

First set of constraints use Roy’s identity to express total demand for
good j and set it equal to supply, zj .

Second equation sets value of income equal to value of production.

Third equation makes sure total income is equal to the value of the
endowments, ωj .

Compare the above maximization problem to:

max ∑
i∈H

ai (p) + b (p) y

subject to the same set of constraints.

The only difference is in the latter each household has been assigned
the same weight.
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Representative Household Normative Representative Household

Proof of Theorem III

Let (p∗, y ∗) be a solution to the second problem.

By definition it is also a solution to the first problem with αi = α, and
therefore it is Pareto optimal.

This establishes the first part of the theorem.

To establish the second part, suppose that ai (p) = ai for all p and all
i ∈ H.

To obtain a contradiction, let y ∈ R|H| and suppose that (p∗∗α , y ∗∗α )
is a solution to the first problem for some weights

{
αi
}
i∈H and

suppose that it is not a solution to the second problem.
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Representative Household Normative Representative Household

Proof of Theorem IV

Let

αM = max
i∈H

αi

and

HM = {i ∈ H |αi = αM}

be the set of households given the maximum Pareto weight.

Let (p∗, y ∗) be a solution to the second problem such that

y i = 0 for all i /∈ HM . (7)

Such a solution exists since objective function and constraint set in
the second problem depend only on the vector (y1, .., y |H|) through
y = ∑i∈H y i .
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Representative Household Normative Representative Household

Proof of Theorem V

Since, by definition, (p∗∗α , y ∗∗α ) is in the constraint set of the second
problem and is not a solution,

∑
i∈H

ai + b (p∗) y ∗ > ∑
i∈H

ai + b (p∗∗α ) y ∗∗α (8)

b (p∗) y ∗ > b (p∗∗α ) y ∗∗α .

The hypothesis that it is a solution to the first problem also implies

∑
i∈H

αiai + ∑
i∈H

αib (p∗∗α ) (y ∗∗α )i ≥ ∑
i∈H

αiai + ∑
i∈H

αib (p∗) (y ∗)i

∑
i∈H

αib (p∗∗α ) (y ∗∗α )i ≥ ∑
i∈H

αib (p∗) (y ∗)i . (9)

Then, it can be seen that any solution (p∗∗, y ∗∗) to the Pareto
optimal allocation problem satisfies y i = 0 for any i /∈ HM .
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Representative Household Normative Representative Household

Proof of Theorem VI

In view of this and the choice of (p∗, y ∗) in (7), equation (9) implies

αMb (p∗∗α ) ∑
i∈H

(y ∗∗α )i ≥ αMb (p∗) ∑
i∈H

(y ∗)i

b (p∗∗α ) (y ∗∗α ) ≥ b (p∗) (y ∗) ,

Contradicts equation (8): hence under the stated assumptions, any
Pareto optimal allocation maximizes the utility of the representative
household.
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Infinite Planning Horizon Infinite Horizon

Infinite Planning Horizon I

Most growth and macro models assume that individuals have an
infinite-planning horizon

Two reasonable microfoundations for this assumption

First: “Poisson death model” or the perpetual youth model:
individuals are finitely-lived, but not aware of when they will die.

1 Strong simplifying assumption: likelihood of survival to the next age in
reality is not a constant

2 But a good starting point, tractable and implies expected lifespan of
1/ν < ∞ periods, can be used to get a sense value of ν.

Suppose each individual has a standard instantaneous utility function
u : R+ → R, and a “true” or “pure” discount factor β̂

Normalize u (0) = 0 to be the utility of death.

Consider an individual who plans to have a consumption sequence
{ct}∞

t=0 (conditional on living).
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Infinite Planning Horizon Infinite Horizon

Infinite Planning Horizon II

Individual would have an expected utility at time t = 0 given by

U (0) = u (c0) + β̂ (1− ν) u (c1) + β̂νu (0)

+β̂
2
(1− ν)2 u (c2) + β̂

2
(1− ν) νu (0) + ...

=
∞

∑
t=0

(
β̂ (1− ν)

)t
u (ct)

=
∞

∑
t=0

βtu (ct) , (10)

Second line collects terms and uses u (0) = 0, third line defines
β ≡ β̂ (1− ν) as “effective discount factor.”

Isomorphic to model of infinitely-lived individuals, but values of β may
differ.

Also equation (10) is already the expected utility; probabilities have
been substituted.

Ömer Özak Economic Growth Macroeconomics II 28 / 79



Infinite Planning Horizon Infinite Horizon

Infinite Planning Horizon III

Second: intergenerational altruism or from the “bequest” motive.

Imagine an individual who lives for one period and has a single
offspring (who will also live for a single period and beget a single
offspring etc.).

Individual not only derives utility from his consumption but also from
the bequest he leaves to his offspring.

For example, utility of an individual living at time t is given by

u (ct) + Ub (bt) ,

ct is his consumption and bt denotes the bequest left to his offspring.

For concreteness, suppose that the individual has total income yt , so
that his budget constraint is

ct + bt ≤ yt .
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Infinite Planning Horizon Infinite Horizon

Infinite Planning Horizon IV

Ub (·): how much the individual values bequests left to his offspring.

Benchmark might be “purely altruistic:” cares about the utility of his
offspring (with some discount factor).

Let discount factor between generations be β.

Assume offspring will have an income of w without the bequest.

Then the utility of the individual can be written as

u (ct) + βV (bt + w) ,

V (·): continuation value, the utility that the offspring will obtain
from receiving a bequest of bt (plus his own w).

Value of the individual at time t can in turn be written as

V (yt) = max
ct+bt≤yt

{u (ct) + βV (bt + wt+1)} ,
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Infinite Planning Horizon Infinite Horizon

Infinite Planning Horizon V

Canonical form of a dynamic programming representation of an
infinite-horizon maximization problem.

Under some mild technical assumptions, this dynamic programming
representation is equivalent to maximizing

∞

∑
s=0

βsu (ct+s)

at time t.

Each individual internalizes utility of all future members of the
“dynasty”.

Fully altruistic behavior within a dynasty (“dynastic” preferences) will
also lead to infinite planning horizon.
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Representative Firm Representative Firm

The Representative Firm I

While not all economies would admit a representative household,
standard assumptions (in particular no production externalities and
competitive markets) are sufficient to ensure a representative firm.

Theorem (The Representative Firm Theorem) Consider a
competitive production economy with N ∈N∪ {+∞}
commodities and a countable set F of firms, each with a
convex production possibilities set Y f ⊂ RN . Let p ∈ RN

+ be
the price vector in this economy and denote the set of profit
maximizing net supplies of firm f ∈ F by Ŷ f (p) ⊂ Y f (so
that for any ŷ f ∈ Ŷ f (p), we have p · ŷ f ≥ p · y f for all
y f ∈ Y f ). Then there exists a representative firm with
production possibilities set Y ⊂ RN and set of profit
maximizing net supplies Ŷ (p) such that for any p ∈ RN

+,
ŷ ∈ Ŷ (p) if and only if ŷ (p) = ∑f ∈F ŷ f for some
ŷ f ∈ Ŷ f (p) for each f ∈ F .
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Representative Firm Representative Firm

Proof of Theorem: The Representative Firm I

Let Y be defined as follows:

Y =

{
∑
f ∈F

y f : y f ∈ Y f for each f ∈ F
}

.

To prove the “if” part of the theorem, fix p ∈ RN
+ and construct

ŷ = ∑f ∈F ŷ f for some ŷ f ∈ Ŷ f (p) for each f ∈ F .

Suppose, to obtain a contradiction, that ŷ /∈ Ŷ (p), so that there
exists y ′ such that p · y ′ > p · ŷ .
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Representative Firm Representative Firm

Proof of Theorem: The Representative Firm II

By definition of the set Y , this implies that there exists
{
y f
}
f ∈F

with y f ∈ Y f such that

p ·
(

∑
f ∈F

y f

)
> p ·

(
∑
f ∈F

ŷ f

)
∑
f ∈F

p · y f > ∑
f ∈F

p · ŷ f ,

so that there exists at least one f ′ ∈ F such that

p · y f ′ > p · ŷ f ′ ,

Contradicts the hypothesis that ŷ f ∈ Ŷ f (p) for each f ∈ F and
completes this part of the proof.
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Representative Firm Representative Firm

Proof of Theorem: The Representative Firm III

To prove the “only if” part of the theorem, let ŷ ∈ Ŷ (p) be a profit
maximizing choice for the representative firm.

Then, since Ŷ (p) ⊂ Y , we have that

ŷ = ∑
f ∈F

y f

for some y f ∈ Y f for each f ∈ F .

Let ŷ f ∈ Ŷ f (p). Then,

∑
f ∈F

p · y f ≤ ∑
f ∈F

p · ŷ f ,

which implies that

p · ŷ ≤ p · ∑
f ∈F

ŷ f . (11)
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Representative Firm Representative Firm

Proof of Theorem: The Representative Firm IV

Since, by hypothesis, ∑f ∈F ŷ f ∈ Y and ŷ ∈ Ŷ (p), we also have

p · ŷ ≥ p · ∑
f ∈F

ŷ f .

Therefore, inequality (11) must hold with equality, so that

p · y f = p · ŷ f ,

for each f ∈ F , and thus y f ∈ Ŷ f (p). This completes the proof of
the theorem.
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Representative Firm Representative Firm

The Representative Firm II

Why such a difference between representative household and
representative firm assumptions? Income effects.

Changes in prices create income effects, which affect different
households differently.

No income effects in producer theory, so the representative firm
assumption is without loss of any generality.

Does not mean that heterogeneity among firms is uninteresting or
unimportant.

Many models of endogenous technology feature productivity
differences across firms, and firms’ attempts to increase their
productivity relative to others will often be an engine of economic
growth.
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Optimal Growth Problem Formulation

Problem Formulation I

Discrete time infinite-horizon economy and suppose that the economy
admits a representative household.

Once again ignoring uncertainty, the representative household has the
t = 0 objective function

∞

∑
t=0

βtu (ct) , (12)

with a discount factor of β ∈ (0, 1).

In continuous time, this utility function of the representative
household becomes ∫ ∞

0
exp (−ρt) u (c (t)) dt (13)

where ρ > 0 is now the discount rate of the individuals.
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Optimal Growth Problem Formulation

Problem Formulation II

Where does the exponential form of the discounting in (13) come
from?

Calculate the value of $1 in T periods, and divide the interval [0,T ]
into T/∆t equally-sized subintervals.

Let the interest rate in each subinterval be equal to ∆t · r .

Key: r is multiplied by ∆t, otherwise as we vary ∆t, we would be
changing the interest rate.

Using the standard compound interest rate formula, the value of $1 in
T periods at this interest rate is

v (T | ∆t) ≡ (1 + ∆t · r)T/∆t .

Now we want to take the continuous time limit by letting ∆t → 0,

v (T ) ≡ lim
∆t→0

v (T | ∆t) ≡ lim
∆t→0

(1 + ∆t · r)T/∆t .
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Optimal Growth Problem Formulation

Problem Formulation III

Thus

v (T ) ≡ exp

[
lim

∆t→0
ln (1 + ∆t · r)T/∆t

]
= exp

[
lim

∆t→0

T

∆t
ln (1 + ∆t · r)

]
.

The term in square brackets has a limit on the form 0/0.

Write this as and use L’Hospital’s rule:

lim
∆t→0

ln (1 + ∆t · r)
∆t/T

= lim
∆t→0

r/ (1 + ∆t · r)
1/T

= rT ,

Therefore,
v (T ) = exp (rT ) .

Conversely, $1 in T periods from now, is worth exp (−rT ) today.

Same reasoning applies to utility: utility from c (t) in t evaluated at
time 0 is exp (−ρt) u (c (t)), where ρ is (subjective) discount rate.
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Welfare Theorems Towards Equilibrium

Welfare Theorems I

There should be a close connection between Pareto optima and
competitive equilibria.

Start with models that have a finite number of consumers, so H is
finite.

However, allow an infinite number of commodities.

Results here have analogs for economies with a continuum of
commodities, but focus on countable number of commodities.

Let commodities be indexed by j ∈N and x i ≡
{
x ij

}∞

j=0
be the

consumption bundle of household i , and ωi ≡
{

ωi
j

}∞

j=0
be its

endowment bundle.

Assume feasible x i ’s must belong to some consumption set X i ⊂ R∞
+ .

Most relevant interpretation for us is that at each date j = 0, 1, ...,
each individual consumes a finite dimensional vector of products.
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Welfare Theorems II

Thus x ij ∈ X i
j ⊂ RK

+ for some integer K .

Consumption set introduced to allow cases where individual may not
have negative consumption of certain commodities.

Let X ≡ ∏i∈H X i be the Cartesian product of these consumption
sets, the aggregate consumption set of the economy.

Also use the notation x ≡
{
x i
}
i∈H and ω ≡

{
ωi
}
i∈H to describe

the entire consumption allocation and endowments in the economy.

Feasibility requires that x ∈ X .

Each household in H has a well defined preference ordering over
consumption bundles.

This preference ordering can be represented by a relationship %i for
household i , such that x ′ %i x implies that household i weakly prefers
x ′ to x .
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Welfare Theorems III

Suppose that preferences can be represented by ui : X i → R, such
that whenever x ′ %i x , we have ui (x ′) ≥ ui (x).

The domain of this function is X i ⊂ R∞
+ .

Let u ≡
{
ui
}
i∈H be the set of utility functions.

Production side: finite number of firms represented by F
Each firm f ∈ F is characterized by production set Y f , specifies
levels of output firm f can produce from specified levels of inputs.

I.e., y f ≡
{
y fj

}∞

j=0
is a feasible production plan for firm f if y f ∈ Y f .

E.g., if there were only labor and a final good, Y f would include pairs
(−l , y) such that with labor input l the firm can produce at most y .
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Welfare Theorems IV

Take each Y f to be a cone, so that if y ∈ Y f , then λy ∈ Y f for any
λ ∈ R+. This implies:

1 0 ∈ Y f for each f ∈ F ;
2 each Y f exhibits constant returns to scale.

If there are diminishing returns to scale from some scarce factors, this
is added as an additional factor of production and Y f is still a cone.

Let Y ≡ ∏f ∈F Y f represent the aggregate production set and
y ≡

{
y f
}
f ∈F such that y f ∈ Y f for all f , or equivalently, y ∈ Y .

Ownership structure of firms: if firms make profits, they should be
distributed to some agents

Assume there exists a sequence of numbers (profit shares)
θ≡

{
θif
}
f ∈F ,i∈H such that θif ≥ 0 for all f and i , and ∑i∈H θif = 1

for all f ∈ F .

θif is the share of profits of firm f that will accrue to household i .
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Welfare Theorems V

An economy E is described by E ≡ (H,F , u, ω, Y , X , θ).

An allocation (x , y ) is feasible if, and only if, x ∈ X , y ∈ Y , and

∑i∈H x ij ≤ ∑i∈H ωi
j + ∑f ∈F y fj for all j ∈N.

A price system is a sequence p ≡ {pj}∞
j=0, such that pj ≥ 0 for all j .

We can choose one of these prices as the numeraire and normalize it
to 1.

Also define p · x as the inner product of p and x , i.e.,
p · x ≡ ∑∞

j=0 pjxj .
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Welfare Theorems VI

Definition A competitive equilibrium for the economy
E ≡ (H,F , u, ω, Y , X , θ) is given by an allocation(
x∗ =

{
x i∗
}
i∈H , y ∗ =

{
y f ∗
}
f ∈F

)
and a price system p∗

such that
1 The allocation (x∗, y ∗) is feasible, i.e., x i∗ ∈ X i for all

i ∈ H, y f ∗ ∈ Y f for all f ∈ F and

∑
i∈H

x i∗j ≤ ∑
i∈H

ωi
j + ∑

f ∈F
y f ∗j for all j ∈N.

2 For every firm f ∈ F , y f ∗ maximizes profits, i.e.,

p∗ · y f ∗ ≥ p∗ · y for all y ∈ Y f .

3 For every consumer i ∈ H, x i∗ maximizes utility, i.e.,

ui
(
x i∗
)
≥ ui (x) for all x s.t. x ∈ X i and p∗ · x ≤ p∗ · x i∗.
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Welfare Theorems VII

Establish existence of competitive equilibrium with finite number of
commodities and standard convexity assumptions is straightforward.

With infinite number of commodities, somewhat more difficult and
requires more sophisticated arguments.

Definition A feasible allocation (x , y ) for economy
E ≡ (H,F , u, ω, Y , X , θ) is Pareto optimal if there exists
no other feasible allocation (x̂ , ŷ ) such that x̂ i ∈ X i for all
i ∈ H, ŷ f ∈ Y f for all f ∈ F ,

∑
i∈H

x̂ ij ≤ ∑
i∈H

ωi
j + ∑

f ∈F
ŷ fj for all j ∈N,

and
ui
(
x̂ i
)
≥ ui

(
x i
)

for all i ∈ H

with at least one strict inequality.
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Welfare Theorems VIII

Definition Household i ∈ H is locally non-satiated if at each x i , ui
(
x i
)

is strictly increasing in at least one of its arguments at x i

and ui
(
x i
)
< ∞.

Latter requirement already implied by the fact that ui : X i → R.

Theorem (First Welfare Theorem I) Suppose that (x∗, y ∗, p∗) is a
competitive equilibrium of economy
E ≡ (H,F , u, ω, Y , X , θ) with H finite. Assume that all
households are locally non-satiated. Then (x∗, y ∗) is Pareto
optimal.
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Proof of First Welfare Theorem I

To obtain a contradiction, suppose that there exists a feasible (x̂ , ŷ )
such that ui

(
x̂ i
)
≥ ui

(
x i
)

for all i ∈ H and ui
(
x̂ i
)
> ui

(
x i
)

for all
i ∈ H′, where H′ is a non-empty subset of H.

Since (x∗, y ∗, p∗) is a competitive equilibrium, it must be the case
that for all i ∈ H,

p∗ · x̂ i ≥ p∗ · x i∗ (14)

= p∗ ·
(

ωi + ∑
f ∈F

θif y
f ∗
)

and for all i ∈ H′,

p∗ · x̂ i > p∗ ·
(

ωi + ∑
f ∈F

θif y
f ∗
)

. (15)
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Proof of First Welfare Theorem II

Second inequality follows immediately in view of the fact that x i∗ is
the utility maximizing choice for household i , thus if x̂ i is strictly
preferred, then it cannot be in the budget set.

First inequality follows with a similar reasoning. Suppose that it did
not hold.

Then by the hypothesis of local-satiation, ui must be strictly
increasing in at least one of its arguments, let us say the j ′th
component of x .

Then construct x̂ i (ε) such that x̂ ij (ε) = x̂ ij and x̂ ij ′ (ε) = x̂ ij ′ + ε.

For ε ↓ 0, x̂ i (ε) is in household i ’s budget set and yields strictly
greater utility than the original consumption bundle x i , contradicting
the hypothesis that household i was maximizing utility.

Note local non-satiation implies that ui
(
x i
)
< ∞, and thus the

right-hand sides of (14) and (15) are finite.
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Proof of First Welfare Theorem III

Now summing over (14) and (15), we have

p∗ · ∑
i∈H

x̂ i > p∗ · ∑
i∈H

(
ωi + ∑

f ∈F
θif y

f ∗
)

, (16)

= p∗ ·
(

∑
i∈H

ωi + ∑
f ∈F

y f ∗
)

,

Second line uses the fact that the summations are finite, can change
the order of summation, and that by definition of shares ∑i∈H θif = 1
for all f .

Finally, since y ∗ is profit-maximizing at prices p∗, we have that

p∗ · ∑
f ∈F

y f ∗ ≥ p∗ · ∑
f ∈F

y f for any
{
y f
}
f ∈F

with y f ∈ Y f for all f ∈ F .

(17)
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Proof of First Welfare Theorem IV

However, by feasibility of x̂ i (Definition above, part 1), we have

∑
i∈H

x̂ ij ≤ ∑
i∈H

ωi
j + ∑

f ∈F
ŷ fj ,

Therefore, by multiplying both sides by p∗ and exploiting (17),

p∗ · ∑
i∈H

x̂ ij ≤ p∗ ·
(

∑
i∈H

ωi
j + ∑

f ∈F
ŷ fj

)

≤ p∗ ·
(

∑
i∈H

ωi
j + ∑

f ∈F
y f ∗j

)
,

Contradicts (16), establishing that any competitive equilibrium
allocation (x∗, y ∗) is Pareto optimal.
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Welfare Theorems IX

Proof of the First Welfare Theorem based on two intuitive ideas.
1 If another allocation Pareto dominates the competitive equilibrium,

then it must be non-affordable in the competitive equilibrium.
2 Profit-maximization implies that any competitive equilibrium already

contains the maximal set of affordable allocations.

Note it makes no convexity assumption.

Also highlights the importance of the feature that the relevant sums
exist and are finite.

Otherwise, the last step would lead to the conclusion that “∞ < ∞”.

That these sums exist followed from two assumptions: finiteness of
the number of individuals and non-satiation.
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Welfare Theorems X

Theorem (First Welfare Theorem II) Suppose that (x∗, y ∗, p∗) is a
competitive equilibrium of the economy
E ≡ (H,F , u, ω, Y , X , θ) with H countably infinite.
Assume that all households are locally non-satiated and that
p∗ ·ω∗ = ∑i∈H ∑∞

j=0 p
∗
j ωi

j < ∞. Then (x∗, y ∗, p∗) is Pareto
optimal.

Proof:
Same as before but now local non-satiation does not guarantee
summations are finite (16), since we sum over an infinite number of
households.
But since endowments are finite, the assumption that

∑i∈H ∑∞
j=0 p

∗
j ωi

j < ∞ ensures that the sums in (16) are indeed finite.
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Welfare Theorems X

Second Welfare Theorem (converse to First): whether or not H is
finite is not as important as for the First Welfare Theorem.

But requires assumptions such as the convexity of consumption and
production sets and preferences, and additional requirements because
it contains an “existence of equilibrium argument”.

Recall that the consumption set of each individual i ∈ H is X i ⊂ R∞
+ .

A typical element of X i is x i =
(
x i1, x i2, ...

)
, where x it can be

interpreted as the vector of consumption of individual i at time t.

Similarly, a typical element of the production set of firm f ∈ F , Y f ,
is y f =

(
y f1 , y f2 , ...

)
.

Let us define x i [T ] =
(
x i0, x i1, x i2, ..., x iT , 0, 0, ...

)
and

y f [T ] =
(
y f0 , y f1 , y f2 , ..., y fT , 0, 0, ...

)
.

It can be verified that limT→∞ x i [T ] = x i and limT→∞ y f [T ] = y f

in the product topology.
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Second Welfare Theorem I

Theorem

Consider a Pareto optimal allocation (x∗∗, y ∗∗) in an economy described
by ω,

{
Y f
}
f ∈F ,

{
X i
}
i∈H, and

{
ui (·)

}
i∈H. Suppose all production and

consumption sets are convex, all production sets are cones, and all{
ui (·)

}
i∈H are continuous and quasi-concave and satisfy local

non-satiation. Suppose also that 0 ∈ X i , that for each x , x ′ ∈ X i with
ui (x) > ui (x ′) for all i ∈ H, there exists T̄ such that ui (x [T ]) > ui (x ′)
for all T ≥ T̄ and for all i ∈ H, and that for each y ∈ Y f , there exists T̃
such that y [T ] ∈ Y f for all T ≥ T̃ and for all f ∈ F .Then this allocation
can be decentralized as a competitive equilibrium.
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Second Welfare Theorem II

Theorem

(continued) In particular, there exist p∗∗ and (ω∗∗, θ∗∗) such that

1 ω∗∗ satisfies ω = ∑i∈H ωi∗∗;

2 for all f ∈ F ,

p∗∗ · y f ∗∗ ≥ p∗∗ · y for all y ∈ Y f ;

3 for all i ∈ H,

if x i ∈ X i involves ui
(
x i
)
> ui

(
x i∗∗

)
, then p∗∗ · x i ≥ p∗∗ · w i∗∗,

where w i∗∗ ≡ ωi∗∗ + ∑f ∈F θi∗∗f y f ∗∗.

Moreover, if p∗∗ ·w ∗∗ > 0 [i.e., p∗∗ · w i∗∗ > 0 for each i ∈ H], then
economy E has a competitive equilibrium (x∗∗, y ∗∗, p∗∗).

Ömer Özak Economic Growth Macroeconomics II 57 / 79



Welfare Theorems Towards Equilibrium

Welfare Theorems XII

Notice:

if instead we had a finite commodity space, say with K commodities,
then the hypothesis that 0 ∈ X i for each i ∈ H and x , x ′ ∈ X i with
ui (x) > ui (x ′), there exists T̄ such that ui (x [T ]) > ui (x ′ [T ]) for
all T ≥ T̄ and all i ∈ H (and also that there exists T̃ such that if
y ∈ Y f , then y [T ] ∈ Y f for all T ≥ T̃ and all f ∈ F) would be
satisfied automatically, by taking T̄ = T̃ = K .
Condition not imposed in Second Welfare Theorem in economies with a
finite number of commodities.
In dynamic economies, its role is to ensure that changes in allocations
at very far in the future should not have a large effect.

The conditions for the Second Welfare Theorem are more difficult to
satisfy than those for the First.

Also the more important of the two theorems: stronger results that
any Pareto optimal allocation can be decentralized.
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Welfare Theorems XIII

Immediate corollary is an existence result: a competitive equilibrium
must exist.

Motivates many to look for the set of Pareto optimal allocations
instead of explicitly characterizing competitive equilibria.

Real power of the Theorem in dynamic macro models comes when we
combine it with models that admit a representative household.

Enables us to characterize the optimal growth allocation that
maximizes the utility of the representative household and assert that
this will correspond to a competitive equilibrium.

Ömer Özak Economic Growth Macroeconomics II 59 / 79



Welfare Theorems Sketch of the Proof

Sketch of the Proof of SWT I

First, I establish that there exists a price vector p∗∗ and an
endowment and share allocation (ω∗∗, θ∗∗) that satisfy conditions
1-3.

This has two parts.

(Part 1) This part follows from the Geometric Hahn-Banach Theorem.

Define the “more preferred” sets for each i ∈ H:

P i =
{
x i ∈ X i :ui

(
x i
)
> ui

(
x i∗∗

)}
.

Clearly, each P i is convex.

Let P = ∑i∈H P i and Y ′ = ∑f ∈F Y f + {ω}, where recall that
ω = ∑i∈H ωi∗∗, so that Y ′ is the sum of the production sets shifted
by the endowment vector.

Both P and Y ′ are convex (since each P i and each Y f are convex).
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Sketch of the Proof of SWT II

Consider the sequences of production plans for each firm to be subsets
of `K∞, i.e., vectors of the form y f =

(
y f0 , y f1 , ...

)
, with each y fj ∈ RK

+.

Moreover, since each production set is a cone, Y ′ = ∑f ∈F Y f + {ω}
has an interior point.

Moreover, let x∗∗ = ∑i∈H x i∗∗.

By feasibility and local non-satiation, x∗∗ = ∑f ∈F y i∗∗ + ω.

Then x∗∗ ∈ Y ′ and also x∗∗ ∈ P (where P is the closure of P).

Next, observe that P ∩ Y ′ = ∅. Otherwise, there would exist ỹ ∈ Y ′,
which is also in P.

This implies that if distributed appropriately across the households, ỹ
would make all households equally well off and at least one of them
would be strictly better off
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Sketch of the Proof of SWT III

I.e., by the definition of the set P, there would exist
{
x̃ i
}
i∈H such

that ∑i∈H x̃ i = ỹ , x̃ i ∈ X i , and ui
(
x̃ i
)
≥ ui

(
x i∗∗

)
for all i ∈ H

with at least one strict inequality.

This would contradict the hypothesis that (x∗∗, y ∗∗) is a Pareto
optimum.

Since Y ′ has an interior point, P and Y ′ are convex, and
P ∩ Y ′ = ∅, Geometric Theorem implies that there exists a nonzero
continuous linear functional φ such that

φ (y) ≤ φ (x∗∗) ≤ φ (x) for all y ∈ Y ′ and all x ∈ P. (18)

(Part 2) We next need to show that this linear functional can be
interpreted as a price vector (i.e., that it does have an inner product
representation).

Let, φ̄ (x) = limT→∞ φ (x [T ]).

Ömer Özak Economic Growth Macroeconomics II 62 / 79



Welfare Theorems Sketch of the Proof

Sketch of the Proof of SWT IV

Then, first note that if φ (x) is a continuous linear functional, then
φ̄ (x) = ∑∞

j=0 φ̄j (xj ) is also a linear functional, where each φ̄j (xj ) is

a linear functional on Xj ⊂ RK
+.

Second claim follows from the fact that φ (x [T ]) is bounded above
by ‖φ‖ · ‖x‖, where ‖φ‖ denotes the norm of the functional φ and is
thus finite.

Clearly, ‖x‖ is also finite.

Moreover, since each element of x is nonnegative, {φ (x [t])} is a
monotone sequence, thus limT→∞ φ (x [T ]) converges and we denote
the limit by φ̄ (x).

Moreover, this limit is a bounded functional and therefore from
Continuity of Linear Function Theorem, it is continuous.
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Sketch of the Proof of SWT V

The first claim follows from the fact that since xj ∈ Xj ⊂ RK
+, we can

define a continuous linear functional on the dual of Xj by
φ̄j (xj ) = φ

(
x̄ j
)
= ∑K

s=1 p
∗∗
j ,sxj ,s , where x̄ j = (0, 0, ..., xj , 0, ...) [i.e., x̄ j

has xj as jth element and zeros everywhere else].

Then clearly,

φ̄ (x) =
∞

∑
j=0

φ̄j (xj ) =
∞

∑
s=0

p∗∗s xs = p∗∗ · x .

To complete this part of the proof, we only need to show that
φ̄ (x) = ∑∞

j=0 φ̄j (xj ) can be used instead of φ as the continuous
linear functional in (18).
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Sketch of the Proof of SWT VI

This follows immediately from the hypothesis that 0 ∈ X i for each
i ∈ H and that there exists T̄ such that for any x , x ′ ∈ X i with
ui (x) > ui (x ′), ui (x [T ]) > ui (x ′ [T ]) for all T ≥ T̄ and for all
i ∈ H, and that there exists T̃ such that if y ∈ Y f , then y [T ] ∈ Y f

for all T ≥ T̃ and for all f ∈ F .

In particular, take T ′ = max
{
T̄ , T̃

}
and fix x ∈ P.

Since x has the property that ui
(
x i
)
> ui

(
x i∗∗

)
for all i ∈ H, we

also have that ui
(
x i [T ]

)
> ui

(
x i∗∗ [T ]

)
for all i ∈ H and T ≥ T ′.

Therefore,

φ (x∗∗ [T ]) ≤ φ (x [T ]) for all x ∈ P.

Now taking limits,

φ̄ (x∗∗) ≤ φ̄ (x) for all x ∈ P.
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Sketch of the Proof of SWT VII

A similar argument establishes that φ̄ (x∗∗) ≥ φ̄ (y) for all y ∈ Y ′, so
that φ̄ (x) can be used as the continuous linear functional separating
P and Y ′.

Since φ̄j (xj ) is a linear functional on Xj ⊂ RK
+, it has an inner

product representation, φ̄j (xj ) = p∗∗j · xj and therefore so does
φ̄ (x) = ∑∞

j=0 φ̄j (xj ) = p∗∗ · x .

Parts 1 and 2 have therefore established that there exists a price
vector (functional) p∗∗ such that conditions 2 and 3 hold.

Condition 1 is satisfied by construction.

Condition 2 is sufficient to establish that all firms maximize profits at
the price vector p∗∗.

To show that all consumers maximize utility at the price vector p∗∗,
use the hypothesis that p∗∗ · w i∗∗ > 0 for each i ∈ H.
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Sketch of the Proof of SWT VIII

We know from Condition 3 that if x i ∈ X i involves
ui
(
x i
)
> ui

(
x i∗∗

)
, then p∗∗ · x i ≥ p∗∗ · w i∗∗.

This implies that if there exists x i that is strictly preferred to x i∗∗ and
satisfies p∗∗ · x i = p∗∗ · w i∗∗ (which would amount to the consumer
not maximizing utility), then there exists x i − ε for ε small enough,
such that ui

(
x i − ε

)
> ui

(
x i∗∗

)
, then p∗∗ ·

(
x i − ε

)
< p∗∗ · w i∗∗,

thus violating Condition 3.

Therefore, consumers also maximize utility at the price p∗∗,
establishing that (x∗∗, y ∗∗, p∗∗) is a competitive equilibrium. �
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Sequential Trading I

Standard general equilibrium models assume all commodities are
traded at a given point in time—and once and for all.

When trading same good in different time periods or states of nature,
trading once and for all less reasonable.

In models of economic growth, typically assume trading takes place at
different points in time.

But with complete markets, sequential trading gives the same result
as trading at a single point in time.

Arrow-Debreu equilibrium of dynamic general equilibrium model: all
households trading at t = 0 and purchasing and selling irrevocable
claims to commodities indexed by date and state of nature.

Sequential trading: separate markets at each t, households trading
labor, capital and consumption goods in each such market.

With complete markets (and time consistent preferences), both are
equivalent.
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Sequential Trading II

(Basic) Arrow Securities: means of transferring resources across
different dates and different states of nature.

Households can trade Arrow securities and then use these securities to
purchase goods at different dates or after different states of nature.

Reason why both are equivalent:
by definition of competitive equilibrium, households correctly anticipate
all the prices and purchase sufficient Arrow securities to cover the
expenses that they will incur.

Instead of buying claims at time t = 0 for xhi ,t ′ units of commodity
i = 1, ...,N at date t ′ at prices (p1,t ′ , ..., pN,t ′), sufficient for
household h to have an income of ∑N

i=1 pi ,t ′x
h
i ,t ′ and know that it can

purchase as many units of each commodity as it wishes at time t ′ at
the price vector (p1,t ′ , ..., pN,t ′).

Consider a dynamic exchange economy running across periods
t = 0, 1, ...,T , possibly with T = ∞.
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Sequential Trading III

There are N goods at each date, denoted by (x1,t , ..., xN,t).

Let the consumption of good i by household h at time t be denoted
by xhi ,t .

Goods are perishable, so that they are indeed consumed at time t.

Each household h ∈ H has a vector of endowment
(
ωh

1,t , ..., ωh
N,t

)
at

time t, and preferences

T

∑
t=0

βt
hu

h
(
xh1,t , ..., xhN,t

)
,

for some βh ∈ (0, 1).

These preferences imply no externalities and are time consistent.

All markets are open and competitive.

Let an Arrow-Debreu equilibrium be given by (p∗, x∗), where x∗ is
the complete list of consumption vectors of each household h ∈ H.
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Sequential Trading IV

That is,
x∗ = (x1,0, ...xN,0, ..., x1,T , ...xN,T ) ,

with xi ,t =
{
xhi ,t
}
h∈H for each i and t.

p∗ is the vector of complete prices
p∗ =

(
p∗1,0, ..., p∗N,0, ..., p∗1,T , ..., p∗N,T

)
, with p∗1,0 = 1.

Arrow-Debreu equilibrium: trading only at t = 0 and choose
allocation that satisfies

T

∑
t=0

N

∑
i=1

p∗i ,tx
h
i ,t ≤

T

∑
t=0

N

∑
i=1

p∗i ,tω
h
i ,t for each h ∈ H.

Market clearing then requires

∑
h∈H

xhi ,t ≤ ∑
h∈H

ωh
i ,t for each i = 1, ...,N and t = 0, 1, ...,T .
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Sequential Trading V

Equilibrium with sequential trading:

Markets for goods dated t open at time t.
There are T bonds—Arrow securities—in zero net supply that can be
traded at t = 0.
Bond indexed by t pays one unit of one of the goods, say good i = 1
at time t.

Prices of bonds denoted by (q1, ..., qT ), expressed in units of good
i = 1 (at time t = 0).

Thus a household can purchase a unit of bond t at time 0 by paying
qt units of good 1 and will receive one unit of good 1 at time t

Denote purchase of bond t by household h by bht ∈ R.

Since each bond is in zero net supply, market clearing requires

∑
h∈H

bht = 0 for each t = 0, 1, ...,T .

Ömer Özak Economic Growth Macroeconomics II 72 / 79



Sequential Trading Sequential Trading

Sequential Trading VI

Each individual uses his endowment plus (or minus) the proceeds
from the corresponding bonds at each date t.

Convenient (and possible) to choose a separate numeraire for each
date t, p∗∗1,t = 1 for all t.

Therefore, the budget constraint of household h ∈ H at time t, given
equilibrium (p∗∗, q∗∗):

N

∑
i=1

p∗∗i ,tx
h
i ,t ≤

N

∑
i=1

p∗∗i ,tωh
i ,t + bht for t = 0, 1, ...,T , (19)

together with the constraint

T

∑
t=0

q∗∗t bht ≤ 0

with the normalization that q∗∗0 = 1.
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Sequential Trading VII

Let equilibrium with sequential trading be (p∗∗, q∗∗, x∗∗, b∗∗).
Theorem (Sequential Trading) For the above-described economy, if

(p∗, x∗) is an Arrow-Debreu equilibrium, then there exists a
sequential trading equilibrium (p∗∗, q∗∗, x∗∗, b∗∗), such that
x∗ = x∗∗, p∗∗i ,t = p∗i ,t/p

∗
1,t for all i and t and q∗∗t = p∗1,t for

all t > 0. Conversely, if (p∗∗, q∗∗, x∗∗, b∗∗) is a sequential
trading equilibrium, then there exists an Arrow-Debreu
equilibrium (p∗, x∗) with x∗ = x∗∗, p∗i ,t = p∗∗i ,tp

∗
1,t for all i

and t, and p∗1,t = q∗∗t for all t > 0.

Focus on economies with sequential trading and assume that there
exist Arrow securities to transfer resources across dates.

These securities might be riskless bonds in zero net supply, or without
uncertainty, role typically played by the capital stock.

Also typically normalize the price of one good at each date to 1.

Hence interest rates are key relative prices in dynamic models.
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Optimal Growth in Discrete Time I

Economy characterized by an aggregate production function, and a
representative household.

Optimal growth problem in discrete time with no uncertainty, no
population growth and no technological progress:

max
{ct ,kt}∞

t=0

∞

∑
t=0

βtu (ct) (20)

subject to
kt+1 = f (kt) + (1− δ) kt − ct , (21)

kt ≥ 0 and given k0 > 0.

Initial level of capital stock is k0, but this gives a single initial
condition.
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Optimal Growth in Discrete Time II

Solution will correspond to two difference equations, thus need
another boundary condition

Will come from the optimality of a dynamic plan in the form of a
transversality condition.

Can be solved in a number of different ways: e.g., infinite dimensional
Lagrangian, but the most convenient is by dynamic programming.

Note even if we wished to bypass the Second Welfare Theorem and
directly solve for competitive equilibria, we would have to solve a
problem similar to the maximization of (20) subject to (21).
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Optimal Growth in Discrete Time III

Assuming that the representative household has one unit of labor
supplied inelastically, this problem can be written as:

max
{ct ,kt}∞

t=0

∞

∑
t=0

βtu (ct)

subject to some given a0 and

at+1 = Rt [at − ct + wt ] , (22)

Need an additional condition so that this flow budget constraint
eventually converges (i.e., so that at should not go to negative
infinity).

Can impose a lifetime budget constraint, or augment flow budget
constraint with another condition to rule out wealth going to negative
infinity.
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Optimal Growth in Continuous Time

The formulation of the optimal growth problem in continuous time is
very similar:

max
[c(t),k(t)]∞t=0

∫ ∞

0
exp (−ρt) u (c (t)) dt (23)

subject to
k̇ (t) = f (k (t))− c (t)− δk (t) , (24)

k (t) ≥ 0 and given k (0) = k0 > 0.

The objective function (23) is the direct continuous-time analog of
(20), and (24) gives the resource constraint of the economy, similar to
(21) in discrete time.

Again, lacks one boundary condition which will come from the
transversality condition.

Most convenient way of characterizing the solution to this problem is
via optimal control theory.
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Conclusions

Models we study in this book are examples of more general dynamic
general equilibrium models.

First and the Second Welfare Theorems are essential.

The most general class of dynamic general equilibrium models are not
tractable enough to derive sharp results about economic growth.

Need simplifying assumptions, the most important one being the
representative household assumption.
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