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Solow Growth Model Solow Growth Model

Solow Growth Model

Develop a simple framework for the proximate causes and the
mechanics of economic growth and cross-country income differences.

Solow-Swan model named after Robert (Bob) Solow and Trevor
Swan, or simply the Solow model

Before Solow growth model, the most common approach to economic
growth built on the Harrod-Domar model.

Harrod-Domar model emphasized potential dysfunctional aspects of
growth: e.g, how growth could go hand-in-hand with increasing
unemployment.

At the center of the Solow growth model is the neoclassical aggregate
production function.

Dynamic version of Classical Model
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Solow Growth Model The Economic Environment of the Basic Solow Model

The Economic Environment of the Basic Solow Model

Study of economic growth and development necessitates dynamic
models.

Despite its simplicity, the Solow growth model is a dynamic general
equilibrium model (though many key features of dynamic general
equilibrium models, such as preferences and dynamic optimization are
missing in this model).

Solow is an algebraic or graphical solution to growth

One Sector, one good, no government, closed economy no foreign
sector

One representative consumer / household saves s ∈ (0, 1) of income,
consumes (1− s), performs 1 unit of labor (L(t)).

One representative firm, uses K , L in production.
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Solow Growth Model Households and Production

Households and Production I

Closed economy, with a unique final good. No foreign sector. One
good = one sector.

Time running to an infinite horizon, time is indexed by t ∈ T ⊆ R+.

Economy is inhabited by a large number of households, and for now
households will not be optimizing.

This is the main difference between the Solow model and the
neoclassical growth model.

To fix ideas, assume all households are identical, so the economy
admits a representative household. One representative household.
One representative consumer.

No government.
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Solow Growth Model Households and Production

Households and Production II

Assume households save a constant exogenous fraction s of their
disposable income

Same assumption used in basic Keynesian models and in the
Harrod-Domar model; at odds with reality.

Assume all firms have access to the same production function:
economy admits a representative firm, with a representative (or
aggregate) production function. One representative firm.
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Solow Growth Model Households and Production

Households and Production III

Aggregate production function [P/N F/N] for the unique final good is

Y (t) = F [K (t) , L (t) ,A (t)] (1)

Assume capital is the same as the final good of the economy, but
used in the production process of more goods.

A (t) is a shifter of the P/N F/N (1). Broad notion of technology.

Major assumption: technology is free; it is publicly available as a
non-excludable, non-rival good.
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Solow Growth Model Households and Production

First Key Assumption

Assumption 1 (Continuity, Twice Continuously Differentiability,
Positive and Diminishing Marginal Products, and
Constant Returns to Scale) The production function
F : R3

+ → R+ is twice continuously differentiable in K and
L, and satisfies

FK (K , L,A) ≡ ∂F (·)
∂K

> 0, FL(K , L,A) ≡ ∂F (·)
∂L

> 0,

FKK (K , L,A) ≡ ∂2F (·)
∂K 2

< 0, FLL(K , L,A) ≡ ∂2F (·)
∂L2

< 0.
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Solow Growth Model Households and Production

First Key Assumption

Moreover, F exhibits constant returns to scale [CRS] in K and L.

Assume F exhibits constant returns to scale in K and L:
F (λK ,λL,A) = λF (K , L,A) ∀ λ ∈ R+. I.e., it is linearly
homogeneous (homogeneous of degree 1) in these two variables.
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Solow Growth Model Households and Production

Review

Definition (1) Let m be an integer. The function g : Rα+β → R is
homogeneous of degree m in x ∈ Rα if and only if

g (λx , z) = λmg (x , z) for all λ ∈ R+ and z ∈ Rβ (2)
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Solow Growth Model Households and Production

Review

Theorem (Euler’s Theorem) (∀α ∈ N, shown for α = 2) Suppose
that g : Rα+β → R is continuously differentiable in x1 ∈ R

and x2 ∈ R, with partial derivatives denoted by gx1 and gx2
and is homogeneous of degree m in x1 and x2. Then

mg (x1, x2, z) = ∇xg(·) · x = gx1 (x , z) x1 + gx2 (x , z) x2

for all x ∈ Rα and z ∈ Rβ.

Moreover, gx1 (x1, x2, z) and gx2 (x1, x2, z) are themselves
homogeneous of degree m− 1 in x1 and x2.

Ömer Özak Solow Model Macroeconomic Theory II 11 / 142



Solow Growth Model Households and Production

Second Key Assumption

Assumption 2 (Inada conditions) F satisfies the Inada conditions

lim
K→0

FK (·) = ∞, and lim
K→∞

FK (·) = 0 ∀ A, L > 0,

lim
L→0

FL (·) = ∞, and lim
L→∞

FL (·) = 0 ∀ A, K > 0.

Works nicely with intermediate value theorem:
∀ γ ∈ R+ , ∃ a unique k such that [s.t.] Fk (·) = γ

This can be observed graphically as FK (0, ·) = ∞, & FK (∞, ·) = 0

Important in ensuring the existence of interior equilibria.

It can be relaxed quite a bit, though useful to get us started.
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Solow Growth Model Households and Production

Second Key Assumption

We assume that inputs and outputs are exchanged in competitive
markets.

A production function is Neoclassical if it satisfies Assumptions 1
and 2.

Note Assumptions 1 and 2: → F (K , 0,A) = F (0, L,A) = 0 ∀K , L,A
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Solow Growth Model Households and Production

Production Functions
34 . Chapter 2 The Solow Growth Model

0
K

A

F(K, L, A) F(K, L, A)

0
K

B

FIGURE 2.1 Production functions. (A) satisfies the Inada conditions in Assumption 2, while (B)
does not.

are highly productive and that when capital or labor are sufficiently abundant, their marginal
products are close to zero. The condition that F(0, L, A) = 0 for all L and A makes capital an
essential input. This aspect of the assumption can be relaxed without any major implications
for the results in this book. Figure 2.1 shows the production function F(K, L, A) as a function
of K , for given L and A, in two different cases; in panel A the Inada conditions are satisfied,
while in panel B they are not.

I refer to Assumptions 1 and 2, which can be thought of as the neoclassical technology
assumptions, throughout much of the book. For this reason, they are numbered independently
from the equations, theorems, and proposition in this chapter.

2.2 The Solow Model in Discrete Time

I next present the dynamics of economic growth in the discrete-time Solow model.

2.2.1 Fundamental Law of Motion of the Solow Model

Recall that K depreciates exponentially at the rate δ, so that the law of motion of the capital
stock is given by

K(t + 1) = (1 − δ) K(t) + I (t), (2.8)

where I (t) is investment at time t .
From national income accounting for a closed economy, the total amount of final good in

the economy must be either consumed or invested, thus

Y (t) = C(t) + I (t), (2.9)

where C(t) is consumption.2 Using (2.1), (2.8), and (2.9), any feasible dynamic allocation in
this economy must satisfy

K(t + 1) ≤ F(K(t), L(t), A(t)) + (1 − δ)K(t) − C(t)

2. In addition, we can introduce government spending G(t) on the right-hand side of (2.9). Government spending
does not play a major role in the Solow growth model, thus its introduction is relegated to Exercise 2.7.

Figure 2.1 – Production functions and the marginal product of capital. (A)
satisfies the Inada conditions in Assumption 2, while (B) does not.
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Solow Growth Model Market Structure, Endowments and Market Clearing

Market Structure, Endowments and Market Clearing I

We will assume that markets are competitive, so ours will be a
prototypical competitive general equilibrium model.

Households own all of the labor, which they supply inelastically.

Endowment of labor in the economy, L̄ (t), and all of this will be
supplied regardless of the price.

The labor market clearing condition can then be expressed as:

L (t) = L̄ (t) (3)

∀ t, where L (t) denotes the demand for labor (and also the level of
employment). And L̄ (t) denotes labor supply.
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Solow Growth Model Market Structure, Endowments and Market Clearing

Market Structure, Endowments and Market Clearing II

More generally, should be written in complementary slackness form.

In particular, let the wage rate at time t be w (t), then the labor
market clearing condition takes the form:

L (t) ≤ L̄ (t) , w (t) ≥ 0, and [L (t)− L̄ (t)]w (t) = 0 (4)

But Assumption 1 and competitive labor markets make sure that
wages have to be strictly positive.
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Solow Growth Model Market Structure, Endowments and Market Clearing

Market Structure, Endowments and Market Clearing III

Households own the capital stock of the economy: K̄ (t).

And at time t rents it to the firms at the rental price of capital: R (t).

Capital market clearing condition:

Kd (t) = K s (t) ≡ K (t) = K̄ (t) ∀ K̄ (t) ≥ 0

Complementary slackness form of Capital market clearing condition:

K (t) ≤ K̄ (t) , R (t) ≥ 0, & [K (t)− K̄ (t)]R (t) = 0, ∀ K̄ (t) ≥ 0

Take households’ initial holdings of capital, K̄ (0), as given
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The Solow Model in Discrete Time

Section 2

The Solow Model in Discrete Time
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The Solow Model in Discrete Time

Solow Model in Discrete Time

Our notation until now is such that t could be discrete or continuous
(careful book makes no distinction whatsoever)

So x(t) could be the path of variable x in either case...but pay
attention some equations change when using continuous instead of
discrete time.

Here we will use xt for discrete time and x(t) for continuous (do the
same in your notes, exams, etc.)
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The Solow Model in Discrete Time

Relating prices and interest rates

Pt is the price of the final good at time t, normalize the price of the
final good to 1 in all periods.

Building on an insight by Kenneth Arrow (Arrow, 1964) that it is
sufficient to price securities (assets) that transfer one unit of
consumption from one date (or state of the world) to another.

In Arrow-Debreu [A-D] economy prices Pt are linked to Pt+1 by the
real rate of interest from t to t + 1 of rt+1:

Pt/Pt+1 = 1+ rt+1

If Pt = 1, then rt is intertemporal exchange rate; “real” or
“commodity” rate of interest ≡ interest rate implied by prices.

rt will enable us to normalize the price to 1 in every period.
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The Solow Model in Discrete Time

Market Structure, Endowments and Market Clearing V

A-D General equilibrium economies:

The same good at different dates is a different commodity.

Therefore, there will be an infinite number of commodities.

Assume capital, K , depreciates by constant rate, “exponential form,”
at δ ∈ (0, 1): of 1 unit of capital at t, only 1− δ is left at t + 1.

δ affects household rt (rate of return for savings); indifference
between lending and investing implies: 1+ rt = Rt + (1− δ).

Interest rate faced by the household will be rt = Rt − δ.
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The Solow Model in Discrete Time Firm Optimization

Firm Optimization I

Consider the problem of profit maximization at a representative firm:

πt ≡ max
Lt≥0,Kt≥0

F [Kt , Lt ,At ]− wtLt − RtKt . (5)

Since there are no irreversible investments or costs of adjustments, the
production side can be represented as a static maximization problem.

Equivalently, cost minimization problem.
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The Solow Model in Discrete Time Firm Optimization

Firm Optimization II

Features worth noting:
1 Problem is set up in terms of aggregate variables.
2 Nothing multiplying the F term, price of the final good has normalized

to 1.
3 Already imposes competitive factor markets: firm is taking as given wt

and Rt .
4 Concave problem, since F is concave.

Since F (·) satisfies CRS, then either π = 0 or the solution does not
exist.
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The Solow Model in Discrete Time Firm Optimization

Firm Optimization III

In particular, given wt , Rt and At the Firms demand for Lt and Kt is
given by the solution to the FOC.

Since F is differentiable, first-order necessary conditions imply:

wt = FL[K t , Lt ,At ] > 0, (6)

and
Rt = FK [K t , Lt ,At ] > 0. (7)

Note also that in (6) and (7), we used Kt and Lt , the amount of
capital and labor used by firms.

In fact, solving for Kt and Lt , we can derive the capital and labor
demands of firms in this economy at rental prices Rt and wt .

Thus we could have used Kd
t instead of Kt , but this additional

notation is not necessary.
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The Solow Model in Discrete Time Firm Optimization

Firm Optimization IV

Alternative solution uses Assumption 1, F (·) is homogeneous of
degree 1 in Lt and Kt , and Euler’s Theorem with m = 1 is CRS:

Yt = F [Kt , Lt ,At ]

= FL [Kt , Lt ,At ] · Lt + FK [Kt , Lt ,At ] ·Kt

πt = FL (·) · Lt + FK (·) ·Kt − wtLt − RtKt

= {FL (·)− wt} · Lt + {FK (·)− Rt} ·Kt

Where in equilibrium must have πt = 0, which will only hold if both
(6) and (7) hold, and L∗ = Lt = L̄t and K ∗ = Kt = K̄t .
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The Solow Model in Discrete Time Firm Optimization

Firm Optimization V

Proposition (1) Suppose Assumption 1 holds. Then in an equilibrium of a
Solow growth model, firms make no profits, and in particular,

Yt = wtLt + RtKt .

Proof: As above Euler Thm; substitute (6) and (7) above into Yt .

Thus πt = 0, so we do not need to specify firm ownership.
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The Solow Model in Discrete Time Fundamental Law of Motion of the Solow Model

Fundamental Law of Motion of the Solow Model I

Recall that K depreciates exponentially at the rate δ, so

Kt+1 = (1− δ)Kt + It ⇔ △Kt+1 = It − δKt , (8)

where It is investment at time t.

From national income accounting for a closed economy,

Yt = Ct + It , (9)

Using (1), (8) and (9), any feasible dynamic allocation in this
economy must satisfy

Kt+1 ≤ F [Kt , Lt ,At ] + (1− δ)Kt − Ct ∀t ∈ N or Z+
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The Solow Model in Discrete Time Fundamental Law of Motion of the Solow Model

Fundamental Law of Motion of the Solow Model II

Solow model is a mixture of an old-style Keynesian model and a
modern dynamic macroeconomic model.

Households do not optimize, but firms still maximize and factor
markets clear.

Note this is not derived from the maximization of utility function:
welfare comparisons have to be taken with a grain of salt.

Behavioral rule of the constant saving rate simplifies the structure of
equilibrium considerably.
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The Solow Model in Discrete Time Fundamental Law of Motion of the Solow Model

Fundamental Law of Motion of the Solow Model III

Since the economy is closed (and there is no government spending),

St = It = Yt − Ct .

Individuals are assumed to save a constant fraction s of their income,

St = sYt , (10)

Ct = (1− s)Yt (11)

Implies that the supply of capital resulting from households’ behavior
can be expressed as

K s
t = (1− δ)Kt + St = (1− δ)Kt + sYt .
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The Solow Model in Discrete Time Fundamental Law of Motion of the Solow Model

Fundamental Law of Motion of the Solow Model IV

Setting supply and demand equal to each other, this implies K s
t = Kt .

From (3), we have Lt = L̄t .

Combining these market clearing conditions with (1) and (8), we
obtain the fundamental law of motion the Solow growth model:

Kt+1 = sF [Kt , Lt ,At ] + (1− δ)Kt . (12)

Nonlinear difference equation.

Equilibrium of the Solow growth model is described by this equation
together with laws of motion for Lt (or L̄t) and At .
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The Solow Model in Discrete Time Definition of Equilibrium

Definition of Equilibrium I

Definition (2) In the basic Solow model for a given sequence of
{Lt ,At}∞

t=0 and an initial capital stock K0, an equilibrium
path is a sequence of capital stocks, output levels,
consumption levels, wages and rental rates {Kt ,Yt ,Ct ,wt ,
Rt}∞

t=0 such that Kt satisfies (12), Yt is given by (1), wt and
Rt are given by (6) and (7), and Ct is given by (11).

Kt+1 = sF [Kt , Lt ,At ] + (1− δ)Kt , Yt = F [Kt , Lt ,At ] ,
wt = FL [Kt , Lt ,At ] > 0 , Rt = FK [Kt , Lt ,At ] > 0 ,
Ct = (1− s)Yt , It = St = sYt , rt = Rt − δ

Note an equilibrium is defined as an entire path of allocations and
prices: not a static object.
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The Solow Model in Discrete Time Equilibrium

Equilibrium Without Population Growth and Technological Progress I

Make some further assumptions, which will be relaxed later:
1 There is no population growth; total population is constant at some

level L > 0. Since individuals supply labor inelastically, Lt = L.
2 No technological progress, so that At = A.

Define the capital-labor ratio of the economy as:

kt ≡
Kt

L
, (13)

Using At = A, Lt = L, and the constant returns to scale assumption
[CRS], we can express output (income) per capita, yt ≡ Yt/L, as:

yt =
1

L
F (Kt , L,A) =

L

L
F

(
Kt

L
, 1,A

)
= F

(
Kt

L
, 1,A

)
≡ f (kt) (14)
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The Solow Model in Discrete Time Equilibrium

Equilibrium Without Population Growth nor Technological Progress II

ct =
Ct

L
= (1− s)

Yt

L
= (1− s) yt

Note that f (kt) here depends on A, so we could write f (kt ,A); but
A is constant and can be normalized to A = 1.

From the Euler Theorem,

Rt = FK (K , L,A) = FK

(
K

L
, 1,A

)
= f ′ (kt) > 0 and

wt = FL (K , L,A) = f (kt)− kt f
′ (kt) > 0. (15)

Both are positive from Assumption 1.
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The Solow Model in Discrete Time Equilibrium

Example:The Cobb-Douglas Production Function I

Cobb-Douglas is a very special production function and many
interesting phenomena are ruled out, but it is widely used:

Yt = F [Kt , Lt ,At ]

= AK α
t L

1−α
t , 0 < α < 1. (16)

Satisfies Assumptions 1 and 2.

Dividing both sides by Lt ,

yt = F (kt , 1,A) = Akα
t ,

From equation (15),

Rt =
∂Akα

t

∂kt
= αAk

−(1−α)
t .

From the Euler Theorem,

wt = yt − Rtkt = (1− α)Akα
t .

Ömer Özak Solow Model Macroeconomic Theory II 34 / 142



The Solow Model in Discrete Time Equilibrium

Example:The Cobb-Douglas Production Function II

Alternatively, in terms of the original Cobb-Douglas production
function (16),

Rt = αAK α−1
t L1−α

t

= αAk
−(1−α)
t ,

Similarly, from (15),

wt = Akα
t − kt · αAk

−(1−α)
t

= (1− α)AK α
t L

−α
t ,

= (1− α)Akα
t ,

Which verifies the alternative expression for the wage rate in (6)
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The Solow Model in Discrete Time Equilibrium

Equilibrium Without Population Growth and Technological Progress III

The per capita representation of the aggregate production function
enables us to divide both sides of (12) by L to obtain:

kt+1 = sf (kt) + (1− δ) kt . (17)

Since it is derived from (12), it also can be referred to as the
equilibrium difference equation of the Solow model

The other equilibrium quantities can be obtained from the
capital-labor ratio kt .

Definition (3) A steady-state equilibrium without technological progress
and population growth is an equilibrium path in which
kt = k∗ for all t.

The economy will tend to this steady state equilibrium over time (but
never reach it in finite time).
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The Solow Model in Discrete Time Equilibrium

Steady-State Capital-Labor Ratio

kt

kt+1

kt+1 = kt

sf (kt ) + (1− δ)kt

•

k∗

•k∗

Figure 2.2 – Determination of the steady-state capital-labor ratio in the Solow
model without population growth and technological change.
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The Solow Model in Discrete Time Equilibrium

Equilibrium Without Population Growth and Technological Progress IV

Curve represents (17) and the dashed line corresponds to the 45◦ line.

Their (positive) intersection gives the steady-state value of the
capital-labor ratio k∗,

k∗ = s · f (k∗) + (1− δ) k∗ ⇐⇒
δk∗ = s · f (k∗) ⇐⇒

f (k∗)

k∗
=

δ

s
. (18)

There is another intersection at k = 0, because the figure assumes
that f (0) = 0. k∗ = 0 is always a steady state [SS], but we will
ignore this intersection throughout:

1 If capital is not essential, f (0) will be positive and k = 0 will cease to
be a steady state equilibrium

2 This intersection, even when it exists, is an unstable point
3 It has no economic interest for us.
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The Solow Model in Discrete Time Equilibrium

Unique Steady State: Basic Solow Model: f (0) = ε > 0.

kt

kt+1

kt+1 = kt

sf (kt ) + (1− δ)kt

•

k∗

•k∗

•ε

Figure 2.3 – Unique steady state in the basic Solow model when f (0) = ε > 0.
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The Solow Model in Discrete Time Equilibrium

Equilibrium Without Population Growth and Technological Progress V

Figure 2.4 is an alternative visual representation of the steady state:
intersection between δk and the function s · f (k). Useful because:

1 Depicts the levels of consumption and investment in a single figure.
2 Emphasizes the steady-state equilibrium sets investment, s · f (k),

equal to the amount of capital that needs to be “replenished”, δk.
3 Production: f (kt)
4 Consumption: ct = f (kt)− s · f (kt) = (1− s) · f (kt)
5 Investment = savings: it = s · f (kt)
6 Steady state capital k∗ such that: s · f (kt) = δkt ≡ s · f (k) = δk.
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The Solow Model in Discrete Time Equilibrium

Consumption and Investment in Steady State

kt

sf (kt ), δkt , f (kt )

δk

sf (k)

f (k)

•sf (k∗) •

k∗

Investment

f (k∗)

Consumption

Figure 2.4 – Investment and consumption in the steady state equilibrium.
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The Solow Model in Discrete Time Equilibrium

Equilibrium Without Population Growth and Technological Progress V

Figure 2.4b is an alternate visualization, rate of change in capital, γk :
1 Starting from (17): kt+1 = s · f (kt) + (1− δ) kt
2 Rate of change of capital: γkt+1

= kt+1−kt
kt

= △kt
kt

= s ·f (kt )
kt

− δ
3 In graph distance of s · f (kt) /kt from δ is rate of change.

Supplemental Graphs
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The Solow Model in Discrete Time Equilibrium

Rate of Change in Capital

kt

γk = ∆k
k

δ

sf (k)/k

•

k∗

γk = 0γk > 0

γk < 0

Figure 2.4B – Distance of s · f (kt) /kt from δ is rate of change of capital.
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The Solow Model in Discrete Time Equilibrium

Rate of Change in Capital

kt

γk = ∆k
k

δ

sf (k)/k

•

k∗

γk = 0γk > 0

γk < 0

Figure 2.4B – Distance of s · f (kt) /kt from δ is rate of change of capital.
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The Solow Model in Discrete Time Equilibrium

Equilibrium Without Population Growth and Technological Progress VI

Proposition (2) Consider the basic Solow growth model and suppose that
Assumptions 1 and 2 hold. Then there exists a unique steady
state equilibrium where: the capital-labor ratio k∗ ∈ (0,∞)
is given by:

f (k∗)

k∗
=

δ

s
(18)

per capita output is given by

y ∗ = f (k∗) (19)

and per capita consumption is given by

c∗ = (1− s) f (k∗) . (20)
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The Solow Model in Discrete Time Equilibrium

Proof of Theorem

Existence:

The preceding argument establishes that any k∗ that satisfies (18) is
a steady state.

To establish existence, note that by Assumption 2 (and from
L’Hospital’s rule), limk→0 f (k) /k = ∞ and limk→∞ f (k) /k = 0.

Moreover, f (k) /k is continuous by Assumption 1, so by the
Intermediate Value Theorem there exists k∗ such that (18) is satisfied.
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The Solow Model in Discrete Time Equilibrium

Proof of Theorem

Uniqueness:

Differentiate f (k) /k with respect to k , which gives

∂ [f (k) /k ]
∂k

=
f ′ (k) k − f (k)

k2
= − w

k2
< 0, (21)

where the last equality uses (15).

Since f (k) /k is everywhere (strictly) decreasing, there can only exist
a unique value k∗ that satisfies (18).

Equations (19) and (20) then follow by definition.
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The Solow Model in Discrete Time Equilibrium

Examples of nonexistence and nonuniqueness of interior
steady states when Assumptions 1 and 2 are not satisfied.

Introduction to Modern Economic Growth

k(t+1)

k(t)

45°

sf(k(t))+(1–δ)k(t)

0

k(t+1)

k(t)

45°
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0

k(t+1)

k(t)

45°

sf(k(t))+(1–δ)k(t)

0
Panel A Panel B Panel C

Figure 2.5. Examples of nonexistence and nonuniqueness of steady
states when Assumptions 1 and 2 are not satisfied.

Equation (2.18) and (2.19) then follow by definition. ¤

Figure 2.5 shows through a series of examples why Assumptions 1 and 2 cannot

be dispensed with for the existence and uniqueness results in Proposition 2.2. In

the first two panels, the failure of Assumption 2 leads to a situation in which there

is no steady state equilibrium with positive activity, while in the third panel, the

failure of Assumption 1 leads to non-uniqueness of steady states.

So far the model is very parsimonious: it does not have many parameters and

abstracts from many features of the real world in order to focus on the question of

interest. Recall that an understanding of how cross-country differences in certain

parameters translate into differences in growth rates or output levels is essential for

our focus. This will be done in the next proposition. But before doing so, let us

generalize the production function in one simple way, and assume that

f (k) = af̃ (k) ,

where a > 0, so that a is a shift parameter, with greater values corresponding to

greater productivity of factors. This type of productivity is referred to as “Hicks-

neutral” as we will see below, but for now it is just a convenient way of looking

at the impact of productivity differences across countries. Since f (k) satisfies the

regularity conditions imposed above, so does f̃ (k).

57

Figure 2.5 – Examples of nonexistence and nonuniqueness of interior
steady states when Assumptions 1 and 2 are not satisfied.
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Equilibrium Without Population Growth and Technological Progress VII

Figure shows through a series of examples why Assumptions 1 and 2
cannot be dispensed with for the existence and uniqueness results.

(A) and (B): the failure of Assumption 2 leads to a situation in which
there is no steady state equilibrium with positive activity.

(C): the failure of Assumption 1 leads to non-uniqueness of steady
states.
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The Solow Model in Discrete Time Equilibrium

Equilibrium Without Population Growth and Technological Progress VIII

Generalize the production function in one simple way, and assume that

f (k) = Af̃ (k) ,

A > 0, so that A is a (“Hicks-neutral”) shift parameter, with greater
values corresponding to greater productivity of factors..

Since f (k) satisfies the regularity conditions imposed above, so does
f̃ (k).
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The Solow Model in Discrete Time Equilibrium

Equilibrium Without Population Growth and Technological Progress IX

Comparative statics with respect to s, A and δ are straightforward for
k∗ and y ∗.

Proposition (3) Suppose Assumptions 1 and 2 hold and f (k) = Af̃ (k).
Denote the steady-state level of the capital-labor ratio by
k∗ (A, s, δ) and the steady-state level of output by
y ∗ (A, s, δ) when the underlying parameters are A, s and δ.
Then we have

∂k∗ (·)
∂A

> 0,
∂k∗ (·)

∂s
> 0 and

∂k∗ (·)
∂δ

< 0

∂y ∗ (·)
∂A

> 0,
∂y ∗ (·)

∂s
> 0 and

∂y ∗ (·)
∂δ

< 0.

Using Figure 2.4 by varying A, s and δ the effects on k∗ and y ∗ can
be demonstrated.
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Varying A, s and δ: effects on k∗ and y ∗

k = K/L

y = Y /L

δk

constant + δk

i2 = s2f (k)

i1 = s1f (k)

f (k)

i∗1 •

k∗1

y∗1

c∗1

i∗2 •

k∗2

y∗2

c∗2

Figure 2.5 – Examples of varying s to determine the effects on k∗ and y∗.
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Equilibrium Without Population Growth and Technological Progress IX

Proof of comparative static results: follows immediately by writing

f̃ (k∗)

k∗
=

δ

As

Now apply the implicit function theorem to obtain the results.

For example,
∂k∗

∂s
=

δ (k∗)2

s2w ∗ > 0

where w ∗ = f (k∗)− k∗f ′ (k∗) > 0.

The other results follow similarly.
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Equilibrium Without Population Growth and Technological Progress X

Same comparative statics with respect to A and δ immediately apply
to c∗ as well. ∂c∗/∂δ < 0 and ∂c∗/∂A > 0

But c∗ will not be monotone in the saving rate (think, for example, of

s = 1). ∂c∗/∂s
?

⋚ 0

In fact, there will exist a specific level of the saving rate, sgold ,
referred to as the “golden rule” saving rate, which maximizes c∗.
But cannot always say whether the golden rule saving rate is “better”
than some other saving rate.

Write the steady state relationship between c∗ and s and suppress the
other parameters:

c∗ (s) = (1− s) f (k∗ (s)) ,

= f (k∗ (s))− δk∗ (s) ,

The second equality exploits that in steady state s · f (k∗) = δk∗.
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Equilibrium Without Population Growth and Technological Progress XI

Differentiating with respect to s,

∂c∗ (s)

∂s
=

[
f ′ (k∗ (s))− δ

] ∂k∗

∂s
. (22)

sgold is such that ∂c∗ (sgold ) /∂s = 0 (FOC) (Verify SOC holds). The
corresponding steady-state golden rule capital stock is defined as
k∗gold .

Proposition (4) In the basic Solow growth model, the highest level of
steady-state consumption is reached for sgold , with the
corresponding steady state capital level k∗gold such that

f ′
(
k∗gold

)
= δ. (23)
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The “Golden Rule”2.3 Transitional Dynamics in the Discrete-Time Solow Model . 43

0 1
Saving rate

s*
gold

Consumption

gold(1� s)f(k*     )

FIGURE 2.6 The golden rule level of saving rate, which maximizes steady-state consumption.

must be considered with caution. In fact, the reason this type of dynamic inefficiency does not
generally apply when consumption-saving decisions are endogenized may already be apparent
to many of you.

2.3 Transitional Dynamics in the Discrete-Time Solow Model

Proposition 2.2 establishes the existence of a unique steady-state equilibrium (with positive
activity). Recall that an equilibrium path does not refer simply to the steady state but to the
entire path of capital stock, output, consumption, and factor prices. This is an important point
to bear in mind, especially since the term “equilibrium” is used differently in economics than
in other disciplines. Typically, in engineering and the physical sciences, an equilibrium refers
to a point of rest of a dynamical system, thus to what I have so far referred to as “the steady-
state equilibrium.” One may then be tempted to say that the system is in “disequilibrium” when
it is away from the steady state. However, in economics, the non-steady-state behavior of an
economy is also governed by market clearing and optimizing behavior of households and firms.
Most economies spend much of their time in non-steady-state situations. Thus we are typically
interested in the entire dynamic equilibrium path of the economy, not just in its steady state.

To determine what the equilibrium path of our simple economy looks like, we need to
study the transitional dynamics of the equilibrium difference equation (2.17) starting from an
arbitrary capital-labor ratio, k(0) > 0. Of special interest are the answers to the questions of
whether the economy will tend to this steady state starting from an arbitrary capital-labor ratio
and how it will behave along the transition path. Recall that the total amount of capital at the
beginning of the economy, K(0) > 0, is taken as a state variable, while for now, the supply
of labor L is fixed. Therefore at time t = 0, the economy starts with an arbitrary capital-labor
ratio k(0) = K(0)/L > 0 as its initial value and then follows the law of motion given by the

Figure 2.6 – The “golden rule” level of savings rate, which maximizes
steady-state consumption.
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The “Golden Rule”- Graphical Solution

k = K/L

y = Y /L

δk

constant + δk

ig = ss f (k)

f (k)

i∗1 •

k∗g

y∗g
c∗g
Maximum

steady-state

consumption
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Proof of Proposition: Golden Rule

By definition ∂c∗ (sgold ) /∂s = 0.

From Proposition above, ∂k∗/∂s > 0, thus (22) can be equal to zero
only when f ′ (k∗ (sgold )) = δ.

Moreover, when f ′ (k∗ (sgold )) = δ, it can be verified that
∂2c∗ (sgold ) /∂s2 < 0, so f ′ (k∗ (sgold )) = δ indeed corresponds a
local maximum.

That f ′ (k∗ (sgold )) = δ also yields the global maximum is a
consequence of the following observations:

∀ s ∈ [0, 1] we have ∂k∗/∂s > 0 and moreover, when s < sgold ,
f ′ (k∗ (s))− δ > 0 by the concavity of f , so ∂c∗ (s) /∂s > 0 for all
s < sgold .
by the converse argument, ∂c∗ (s) /∂s < 0 for all s > sgold .
Therefore, only sgold satisfies f ′ (k∗ (s)) = δ and gives the unique
global maximum of SS consumption per capita.
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Equilibrium Without ... XII: Dynamic Inefficiency

When the economy is below k∗gold , higher saving will increase SS
consumption; when it is above k∗gold , steady-state SS consumption
can be increased by saving less.

When economy is above k∗gold , capital-labor ratio is too high so that
individuals are investing too much and not consuming enough. This
problem is called dynamic inefficiency, (clearly not Pareto Optimal)
since we can increase consumption in all periods!

When economy is below k∗gold , although a higher steady-state
consumption can be reached, the path involves a period of higher
savings and lower consumption, not clear if dynamically inefficient.

Still...without intertemporal utility function to measure, statements
about “inefficiency” have to be considered with caution.

Such dynamic inefficiency will not arise in the Neoclassical Growth
Model once we endogenize consumption-saving decisions.
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The “Golden Rule”- Dynamic Inefficiency

k = K/L

y = Y /L

δk

constant + δk

i2 = s2f (k)

ig = sg f (k)

f (k)

i∗1 •

k∗g

y∗g

c∗g

i∗2 •

k∗2

y∗2

c∗2

Figure 2.6B – In case economy is above k∗gold , capital-labor ratio is too high so that individuals

are investing too much and not consuming enough (dynamic inefficiency), as all periods are
increased by consuming more.
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Section 3

Transitional Dynamics in the Discrete Time Solow
Model
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Transitional Dynamics in the Discrete Time Solow Model Transitional Dynamics

Review of the Discrete-Time Solow Model

Per capita capital stock evolves according to (17):

kt+1 = sf (kt) + (1− δ) kt .

The steady-state value of the capital-labor ratio k∗ is given by (18):

f (k∗)

k∗
=

δ

s
.

Consumption is given by (20):

ct = (1− s) yt

And factor prices are given by (15):

Rt = f ′ (kt) > 0 and

wt = f (kt)− kt f
′ (kt) > 0.
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Transitional Dynamics

Equilibrium path: not simply steady state, but entire path of capital
stock, output, consumption and factor prices.

In engineering and physical sciences, equilibrium is point of rest of
dynamical system, thus the steady state equilibrium.
In economics, non-steady-state behavior also governed by optimizing
behavior of households and firms and market clearing.

Need to study the “transitional dynamics” of the equilibrium
difference equation (17) starting from an arbitrary initial capital-labor
ratio k (0) > 0.

Key question: whether economy will tend to steady state and how it
will behave along the transition path.
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Transitional Dynamics: Review I

Consider the nonlinear system of autonomous difference equations,

xt+1 = G (xt) , (24)

xt ∈ Rn and G : Rn → Rn.
Let x∗ be a fixed point of the mapping G (·), i.e.,

x∗ = G (x∗) .

x∗ is sometimes referred to as “an equilibrium point” of (24).
We will refer to x∗ as a stationary point or a steady state of (24).

Definition (4) A steady state x∗ is (locally) asymptotically stable if there
exists an open set B (x∗) ∋ x∗ such that for any solution
{xt}∞

t=0 to (24) with x (0) ∈ B (x∗), we have xt → x∗.
Moreover, x∗ is globally asymptotically stable if for all
x (0) ∈ Rn, for any solution {xt}∞

t=0, we have xt → x∗.

Theorem (2) (Stability for Systems of Linear Difference Equations)
Consider the following linear difference equation system:

xt+1 = Axt + b, (25)

with initial value x(0), where xt ∈ Rn ∀ t, A is an n× n matrix, and b is
a n× 1 column vector. Let x∗ be the steady state of the difference
equation given byAx∗ + b = x∗ . Suppose that all of the eigenvalues of A
are strictly inside the unit circle in the complex plane. Then the steady
state of the difference equation (25), x∗ , is globally (asymptotically)
stable, in the sense that starting from any x (0)) ∈ Rn , the unique
solution xt)∞t = 0 satisfies xt → x∗ .
Unfortunately, much less can be said about nonlinear systems, but the
following is a standard local stability result.
——————————————

Theorem (3) (Local Stability for Systems of Nonlinear Difference
Equations) Consider the following nonlinear autonomous
system:

xt+1 = G (xt) , (26)

with initial value x(0), where G : Rn → Rn . Let x∗ be a
steady state of this system, that is, G(x∗) = x∗ , and
suppose that G is differentiable at x∗ . Define

J ≡ DG (x∗) ,

where DG denotes the matrix of partial derivatives
(Jacobian) of G. Suppose that all of the eigenvalues of J are
strictly inside the unit circle. Then the steady state of the
difference equation (26), x∗ , is locally (asymptotically)
stable, in the sense that there exists an open neighborhood
of x∗ , B (x∗) ⊂ Rn, such that starting from any
x (0) ∈ B (x∗) , xt → x∗.

——————————————
An immediate corollary of Theorem 2.3 is the following useful result.
...
——————————————
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Transitional Dynamics: Review II

Simple Result About Stability

Let xt , a, b ∈ R, then the unique steady state of the linear difference
equation xt+1 = axt + b is globally asymptotically stable (in the sense
that xt → x∗ = b/ (1− a)) if |a| < 1.

Suppose that g : R → R is differentiable at the steady state x∗,
defined by g (x∗) = x∗. Then, the steady state of the nonlinear
difference equation xt+1 = g (xt), x∗, is locally asymptotically stable
if |g ′ (x∗)| < 1. Moreover, if |g ′ (x)| < 1 for all x ∈ R, then x∗ is
globally asymptotically stable.
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Transitional Dynamics in the Discrete Time Solow Model I

Now we can analyze the stability of the Solow growth model difference
equation (17): kt+1 = sf (kt) + (1− δ) kt .

Proposition (5) Suppose that Assumptions 1 and 2 hold, then the
steady-state equilibrium of the Solow growth model
described by the difference equation (17) is globally
asymptotically stable, and starting from any k (0) > 0, kt
monotonically converges to k∗.
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Proof of Proposition: Transitional Dynamics I

Let g (k) ≡ sf (k) + (1− δ) k. First observe that g ′ (k) exists and is
always strictly positive, i.e., g ′ (k) > 0 for all k .

Next, from (17) [ kt+1 = sf (kt) + (1− δ) kt ],

kt+1 = g (kt) , (27)

with a unique steady state at k∗.

From (18), the steady-state capital k∗ satisfies δk∗ = s · f (k∗), or

k∗ = g (k∗) . (28)

Recall that f (·) is concave and differentiable from Assumption 1 and
satisfies f (0) ≥ 0 from Assumption 2.
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Proof of Proposition: Transitional Dynamics II

For any strictly concave differentiable function,

f (k) > f (0) + kf ′ (k) ≥ kf ′ (k) , (29)

The second inequality uses the fact that f (0) ≥ 0.

Since (29) implies that δ = sf (k∗) /k∗ > sf ′ (k∗), we have
g ′ (k∗) = sf ′ (k∗) + 1− δ < 1. Therefore,

g ′ (k∗) ∈ (0, 1) .

The Simple Result then establishes local asymptotic stability.
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Proof of Proposition: Transitional Dynamics III

To prove global stability, note that for all kt ∈ (0, k∗),

kt+1 − k∗ = g (kt)− g (k∗)

= −
∫ k∗

kt
g ′ (k) dk,

< 0

First line follows by subtracting (28) from (27), second line uses the
fundamental theorem of calculus, and third line follows from the
observation that g ′ (k) > 0 for all k .
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Proof of Proposition: Transitional Dynamics IV

Next, (17) also implies

kt+1 − kt
kt

= s
f (kt)

kt
− δ

> s
f (k∗)

k∗
− δ

= 0,

Second line uses the fact that f (k) /k is decreasing in k (from (29)
above) and last line uses the definition of k∗.

These two arguments together establish that for all kt ∈ (0, k∗),
kt+1 ∈ (kt , k∗).

An identical argument implies that for all kt > k∗, kt+1 ∈ (k∗, kt).

Therefore, {kt}∞
t=0 monotonically converges to k∗ and is globally

stable.
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Transitional Dynamics in the Discrete Time SolowModel II

Stability result can be seen diagrammatically in the Figure:

Starting from initial capital stock k0 < k∗, economy grows towards k∗,
capital deepening and growth of per capita income.
If economy were to start with k ′0 > k∗, reach the steady state by
decumulating capital and contracting.

Proposition (6) Suppose that Assumptions 1 and 2 hold, and k0 < k∗,
then {wt}∞

t=0 is an increasing sequence and {Rt}∞
t=0 is a

decreasing sequence. If k0 > k∗, the opposite results apply.

Thus far Solow growth model has a number of nice properties, but no
growth, except when the economy starts with k0 < k∗.
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Transitional Dynamics in Figure 2.4 The Solow Model in Continuous Time . 47

0 k*k0 k� k t

k t+1

k*

45°

FIGURE 2.7 Transitional dynamics in the basic Solow model.

Recall that when the economy starts with too little capital relative to its labor supply,
the capital-labor ratio will increase. Thus the marginal product of capital will fall due to
diminishing returns to capital and the wage rate will increase. Conversely, if it starts with
too much capital, it will decumulate capital, and in the process the wage rate will decline and
the rate of return to capital will increase.

The analysis has established that the Solow growth model has a number of nice properties:
unique steady state, global (asymptotic) stability, and finally, simple and intuitive comparative
statics. Yet so far it has no growth. The steady state is the point at which there is no growth
in the capital-labor ratio, no more capital deepening, and no growth in output per capita.
Consequently, the basic Solow model (without technological progress) can only generate
economic growth along the transition path to the steady state (starting with k(0) < k∗). However
this growth is not sustained: it slows down over time and eventually comes to an end. Section
2.7 shows that the Solow model can incorporate economic growth by allowing exogenous
technological change. Before doing this, it is useful to look at the relationship between the
discrete- and continuous-time formulations.

2.4 The Solow Model in Continuous Time

2.4.1 From Difference to Differential Equations

Recall that the time periods t = 0, 1, . . . can refer to days, weeks, months, or years. In some
sense, the time unit is not important. This arbitrariness suggests that perhaps it may be more
convenient to look at dynamics by making the time unit as small as possible, that is, by going
to continuous time. While much of modern macroeconomics (outside of growth theory) uses

0

Figure 2.7 – Transitional dynamics in the basic Solow model.

————————————
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Section 4

The Solow Model in Continuous Time
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The Solow Model in Continuous Time Towards Continuous Time

From Difference to Differential Equations I

Start with a simple difference equation

xt+1 − xt = g (xt) . (30)

Now consider the following approximation for any ∆t ∈ [0, 1] ,

xt+∆t − xt ≃ ∆t · g (xt) ,

When ∆t = 0, this equation is just an identity. When ∆t = 1, it gives
(30).

In-between it is a linear approximation, not too bad if g (x) ≃ g (xt)
for all x ∈ [xt , xt+1]
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The Solow Model in Continuous Time Towards Continuous Time

From Difference to Differential Equations II

Divide both sides of this equation by ∆t, and take limits

lim
∆t→0

x (t + ∆t)− x (t)

∆t
= ẋ (t) ≃ g (x (t)) , (31)

where

ẋ (t) ≡ dx (t)

dt

Equation (31) is a differential equation representing (30) for the case
in which t and t + 1 is “small”.
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The Solow Model in Continuous Time Steady State in Continuous Time

Fundamental Eq. of Solow Model in Continuous Time I

Nothing has changed on the production side, so (15) still give the
factor prices, now interpreted as instantaneous wage and rental rates.
R (t) = f ′ (k (t)) > 0 and w (t) = f (k (t))− k (t) f ′ (k (t)) > 0.

Savings are again: S (t) = sY (t) ,

Consumption is given by (11) above: C (t) = (1− s)Y (t)
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The Solow Model in Continuous Time Steady State in Continuous Time

Fundamental Eq. of Solow Model in Continuous Time II

Introduce population growth (constant fertility rate [cfr]),

L (t) = entL (0) . (32)

This directly leads to the growth rate of population:

L̇ (t) /L (t) = n > 0

as
L̇ (t) = dL (t) /dt = n · entL (0) = n · L (t)
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The Solow Model in Continuous Time Steady State in Continuous Time

Fundamental Eq. of Solow Model in Continuous Time III

Recall

k (t) ≡ K (t)

L (t)
,

Implies

k̇ (t)

k (t)
=

K̇ (t)

K (t)
− L̇ (t)

L (t)
,

=
K̇ (t)

K (t)
− n.
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The Solow Model in Continuous Time Steady State in Continuous Time

Fundamental Eq. of Solow Model in Continuous Time IV

From the limiting argument leading to equation (31),

K̇ (t) = sF [K (t) , L (t) ,A (t)]− δK (t) .

Using the definition of k (t) and the constant returns to scale
properties of the production function,

k̇ (t)

k (t)
= s

F [K , L,A]

K (t)
− (n+ δ) = s

f (k (t))

k (t)
− (n+ δ) , (33)
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The Solow Model in Continuous Time Steady State in Continuous Time

Fundamental Eq. of Solow Model in Continuous Time V

Definition (5) In the basic Solow model in continuous time with
population growth at the rate n, no technological progress
and an initial capital stock K (0), an equilibrium path is a
sequence of capital stocks, labor, output levels, consumption
levels, wages and rental rates [K (t) , L (t) ,Y (t) ,C (t) ,
w (t) ,R (t)]∞t=0 such that L (t) satisfies (32),
k (t) ≡ K (t) /L (t) satisfies (33), Y (t) is given by the
aggregate production function, C (t) is given by (11), and
w (t) and R (t) are given by (15).
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The Solow Model in Continuous Time Steady State in Continuous Time

Fundamental Eq. of Solow Model in Continuous Time VI

As before, in steady-state equilibrium k (t) remains constant at k∗.
L (t) satisfies (32):

L (t) = entL (0)

k (t) ≡ K (t) /L (t) satisfies (33):

k̇ (t)

k (t)
= s

f (k (t))

k (t)
− (n+ δ)

Output per capita is given by

y (t) = f (k(t))

C (t) is given by (11):

C (t) = (1− s)Y (t) or c(t) = (1− s)y (t)

and w (t) and R (t) are given by (15):

R (t) = FK = f ′ (k (t)) > 0 and w (t) = FL = f (k (t))− k (t) f ′ (k (t)) > 0.
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The Solow Model in Continuous Time Steady State in Continuous Time

Investment & consumption in S-S-M w/ population growth.

kt

sf (kt ), (δ + n)kt , f (kt )

(δ + n)k

sf (k)

f (k)

•sf (k∗) •

k∗

Investment

f (k∗)

Consumption

Figure 2.8 – Investment & consumption in the steady-state equilibrium with population growth.
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The Solow Model in Continuous Time Steady State in Continuous Time

Steady State of the Solow Model in Continuous Time I

Equilibrium path (33) has a unique steady state at k∗, which is given
by a slight modification of (18) above:

f (k∗)

k∗
=

n+ δ

s
. (34)

Proposition (7) Consider the basic Solow growth model in continuous
time and suppose that Assumptions 1 and 2 hold. Then
there exists a unique steady state equilibrium where the
capital-labor ratio is equal to k∗ ∈ (0,∞) and is given by
(34), per capita output is given by

y ∗ = f (k∗)

and per capita consumption is given by

c∗ = (1− s) f (k∗) .
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The Solow Model in Continuous Time Steady State in Continuous Time

Steady State of the Solow Model in Continuous Time II

Moreover, again defining f (k) = Af̃ (k) , we obtain:

Proposition (8) Suppose Assumptions 1 and 2 hold and f (k) = Af̃ (k).
Denote the steady-state equilibrium level of the capital-labor
ratio by k∗ (A, s, δ, n) and the steady-state level of output by
y ∗ (A, s, δ, n) when the underlying parameters are given by
A, s and δ. Then we have

∂k∗ (·)
∂A

> 0,
∂k∗ (·)

∂s
> 0,

∂k∗ (·)
∂δ

< 0 and
∂k∗ (·)

∂n
< 0

∂y ∗ (·)
∂A

> 0,
∂y ∗ (·)

∂s
> 0,

∂y ∗ (·)
∂δ

< 0 and
∂y ∗ (·)

∂n
< 0.

Ömer Özak Solow Model Macroeconomic Theory II 83 / 142



The Solow Model in Continuous Time Steady State in Continuous Time

Steady State of the Solow Model in Continuous Time III

Relative to the earlier n = 0 (Prop. 3) a higher population growth
rate, n > 0, reduces the capital-labor ratio and output per capita.

n > 0 → faster dilution of capital → lower SS capital-labor ratio.

Testable Implication:

countries with high population growth rates should be poorer.
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Transitional Dynamics in the Continuous Time Solow Model

Section 5

Transitional Dynamics in the Continuous Time Solow
Model
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Transitional Dynamics in the Continuous Time Solow Model Dynamics in Continues Time

Review Dynamical Systems I

Analysis of transitional dynamics and stability with continuous time
yields similar results to Theorems (2) and (3), with slightly simpler
analysis.

Recall basic results on stability of systems of differential equations.

Theorem (4) (Stability of Linear Differential Equations) Consider the
following autonomous linear differential equation system:

ẋ(t) = Ax(t) + b (35)

with initial value x(0), where x(t) ∈ Rn for all t, A is an
invertible n× n matrix, and b is a n× 1 column vector. Let
x∗ be the unique steady state of the system given by
Ax∗ + b = 0. Suppose that all eigenvalues of A have
negative real parts. Then the steady state of the differential
equation (35) x∗ is globally asymptotically stable, in the
sense that starting from any x(0) ∈ Rn , x(t) → x∗ .
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Transitional Dynamics in the Continuous Time Solow Model Dynamics in Continues Time

Review Dynamical Systems II

Theorem (5) (Local Stability of Nonlinear Differential Equations)
Consider the following nonlinear autonomous differential
equation:

ẋ(t) = G ( x (t) ) (36)

with initial value x (0), where G : Rn → Rn . Let x∗ be a
steady state of this system, that is, G (x∗) = 0, and suppose
that G is differentiable at x∗ . Define

A ≡ DG(x∗),

and suppose that all eigenvalues of A have negative real
parts. Then the steady state of the differential equation
(36), x∗ , is locally asymptotically stable, in the sense that
there exists an open neighborhood of x∗ , B(x∗) ⊂ Rn ,
such that starting from any x(0) ∈ B(x∗), x(t) → x∗ .

Once again an immediate corollary is as follows:
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Transitional Dynamics in the Continuous Time Solow Model Dynamics in Continues Time

Review Dynamical Systems III

Corollary (2) 1 Let x(t) ∈ R. Then the steady state of the linear
differential equation ẋ(t) = ax(t) + b is asymptotically
globally stable (in the sense that x(t) → −b/a) if
a < 0.

2 Let g : R → R be differentiable in the neighborhood of
the steady state x∗ defined by g(x∗) = 0 and suppose
that g ′(x∗) < 0. Then the steady state of the nonlinear
differential equation ẋ(t) = g(x(t)) , x∗ , is locally
asymptotically stable.
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Transitional Dynamics in the Continuous Time Solow Model Dynamics in Continues Time

Transitional Dynamics Continuous Time Solow Model I

Simple Result about Stability In Continuous Time Model

Let g : R → R be a differentiable function and suppose that there
exists a unique x∗ such that g (x∗) = 0.

Moreover, suppose g (x) < 0 for all x > x∗ and g (x) > 0 for all
x < x∗.
Then the steady state of the nonlinear differential equation
ẋ (t) = g (x (t)), x∗, is globally asymptotically stable, i.e., starting
with any x (0), x (t) → x∗.

Note that g(x) could be non-monotonic and still satisfy the first condition.
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Transitional Dynamics in the Continuous Time Solow Model Dynamics in Continues Time

Dynamics of capital-labor ratio in basic Solow model52 . Chapter 2 The Solow Growth Model

0
k*

k(t)

k(t)
·

k(t)

� (• � g � n)s
f(k(t))

k(t)

FIGURE 2.9 Dynamics of the capital-labor ratio in the basic Solow model.

Notice that the equivalent of part 3 of Corollary 2.2 is not true in discrete time. The
implications of this observation are illustrated in Exercise 2.21.

In view of these results, Proposition 2.5 has a straightforward generalization of the results
for discrete time.

Proposition 2.9 Suppose that Assumptions 1 and 2 hold. Then the basic Solow growth
model in continuous time with constant population growth and no technological change is
globally asymptotically stable and, starting from any k(0) > 0, k(t) monotonically converges
to k∗.

Proof. The proof of stability is now simpler and follows immediately from part 3 of Corol-
lary 2.2 by noting that when k < k∗, we have sf (k) − (n + δ)k > 0, and when k > k∗, we have
sf (k) − (n + δ)k < 0.

Figure 2.9 shows the analysis of stability diagrammatically. The figure plots the right-hand
side of (2.33) and makes it clear that when k < k∗, k̇ > 0, and when k > k∗, k̇ < 0, so that the
capital-labor ratio monotonically converges to the steady-state value k∗.

Example 2.2 (Dynamics with the Cobb-Douglas Production Function) Let us return
to the Cobb-Douglas production function introduced in Example 2.1:

F(K, L, A) = AKαL1−α, with 0 < α < 1.

As noted above, the Cobb-Douglas production function is special, mainly because it has an
elasticity of substitution between capital and labor equal to 1. For a homothetic production
function F(K, L), the elasticity of substitution is defined by

σ ≡ −
[
∂ log(FK/FL)

∂ log(K/L)

]−1

, (2.37)

Figure 2.9 – Dynamics of the capital-labor ratio in the basic Solow model. – Simple Result.
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Transitional Dynamics in the Continuous Time Solow Model Dynamics in Continues Time

Transitional Dynamics Continuous Time Solow Model II

Fundamental equation is

k̇ (t) = s · f (k (t))− (n+ δ) k (t) ,

so that

∂k̇ (t)

∂k (t)
= s · f ′ (k (t))− (n+ δ) .

Thus, SS is determined by

s · f (k∗) = (n+ δ) k∗ → (n+ δ) = s · f (k∗) /k∗

taking derivative wrt k∗

∂k̇

∂k
(k∗) = s · f ′ (k∗)− (n+ δ) = s · f ′ (k∗)− s · f (k∗) /k∗
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Transitional Dynamics in the Continuous Time Solow Model Dynamics in Continues Time

Transitional Dynamics Continuous Time Solow Model III

Using the SS condition, we have that

∂k̇

∂k
(k∗) = s ·

[
f ′ (k∗) k∗ − f (k∗)

k∗

]
= − s · w ∗

k∗
< 0

i.e.

∂k̇ (k∗)

∂k
< 0.
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Transitional Dynamics in the Continuous Time Solow Model Dynamics in Continues Time

Transitional Dynamics Continuous Time Solow Model VII

Proposition (9) Suppose that Assumptions 1 and 2 hold, then the basic
Solow growth model in continuous time with constant
population growth and no technological change is globally
asymptotically stable, and starting from any k (0) > 0,
k (t) → k∗.

Proof: Follows immediately from the Theorem and Corollary (2)(3.)
above by noting whenever k < k∗, sf (k)− (n+ δ) k > 0 and
whenever k > k∗, sf (k)− (n+ δ) k < 0.

Figure 2.9: plots the right-hand side of (33) and makes it clear that
whenever k < k∗, k̇ > 0 and whenever k > k∗, k̇ < 0, so k
monotonically converges to k∗.
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Transitional Dynamics in the Continuous Time Solow Model Cobb-Douglas Example

Dynamics with Cobb-Douglas Production Function I

Return to the Cobb-Douglas Example

F [K , L,A] = AK αL1−α with 0 < α < 1.

Special, mainly because elasticity of substitution between capital and
labor is 1.

Recall for a homothetic production function F (K , L), the elasticity of
substitution is

σ ≡ −
[

∂ ln (FK/FL)
∂ ln (K/L)

]−1

, (37)

F is required to be homothetic, so that FK/FL is only a function of
K/L.
For the Cobb-Douglas production function
FK/FL = (α/ (1− α)) · (L/K ), thus σ = 1.
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Transitional Dynamics in the Continuous Time Solow Model Cobb-Douglas Example

Dynamics with Cobb-Douglas Production Function II

When the production function is Cobb-Douglas and factor markets
are competitive, equilibrium factor shares will be constant:

αK (t) =
R (t)K (t)

Y (t)

=
FK (K (t), L (t))K (t)

Y (t)

=
αA [K (t)]α−1 [L (t)]1−α K (t)

A [K (t)]α [L (t)]1−α

= α.

Similarly, the share of labor is αL (t) = 1− α.

Reason: with σ = 1, as capital increases, its marginal product
decreases proportionally, leaving the capital share constant.
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Transitional Dynamics in the Continuous Time Solow Model Cobb-Douglas Example

Dynamics with Cobb-Douglas Production Function III

Per capita production function takes the form f (k) = Akα, so the
steady state is given again as

A (k∗)α−1 =
n+ δ

s
or

k∗ =

(
sA

n+ δ

) 1
1−α

,

k∗ is increasing in s and A and decreasing in n and δ.
In addition, k∗ is increasing in α: higher α implies higher share paid
to capital and less diminishing MPK
Transitional dynamics are also straightforward in this case:

k̇ (t) = sA [k (t)]α − (n+ δ) k (t)

with initial condition k (0).
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Transitional Dynamics in the Continuous Time Solow Model Cobb-Douglas Example

Dynamics with Cobb-Douglas Production Function IV

To solve this equation, let x (t) ≡ k (t)1−α,

ẋ (t) = (1− α) sA− (1− α) (n+ δ) x (t) ,

General solution

x (t) =
sA

n+ δ
+

[
x (0)− sA

n+ δ

]
exp (− (1− α) (n+ δ) t) .

In terms of the capital-labor ratio

k (t) =

{
sA

n+ δ
+

[
[k (0)]1−α − sA

n+ δ

]
exp (− (1− α) (n+ δ) t)

} 1
1−α

.
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Transitional Dynamics in the Continuous Time Solow Model Cobb-Douglas Example

Dynamics with Cobb-Douglas Production Function V

This solution illustrates:

starting from any k (0), k (t) → k∗ = (sA/ (n+ δ))1/(1−α), and rate
of adjustment is related to (1− α) (n+ δ),
more specifically, gap between k (0) and its steady-state value is closed
at the exponential rate (1− α) (n+ δ).

Intuitive:

higher α, less diminishing returns, slows down rate at which marginal
and average product of capital declines, reduces rate of adjustment to
steady state.
smaller δ and smaller n: slow down the adjustment of capital per
worker and thus the rate of transitional dynamics.
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Transitional Dynamics in the Continuous Time Solow Model Constant Elasticity of Substitution Example

Constant Elasticity of Substitution Production Function I

Constant Elasticity of Substitution – CES

Imposes a constant elasticity, σ, not necessarily equal to 1.

Consider a vector-valued index of technology
A (t) = (AH (t) ,AK (t) ,AL (t)).
CES production function can be written as

Y (t) = F [K (t) , L (t) ,A (t)]

≡ AH (t)
[
γ (AK (t)K (t))

σ−1
σ + (1− γ) (AL (t) L (t))

σ−1
σ

] σ
σ−1

,(38)

AH (t) > 0, AK (t) > 0 and AL (t) > 0 are three different types of
technological change

γ ∈ (0, 1) is a distribution parameter,
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Transitional Dynamics in the Continuous Time Solow Model Constant Elasticity of Substitution Example

Constant Elasticity of Substitution Production Function II

σ ∈ [0,∞] is the elasticity of substitution: easy to verify that

FK
FL

=
γAK (t)

σ−1
σ K (t)−

1
σ

(1− γ)AL (t)
σ−1

σ L (t)−
1
σ

,

Thus, indeed have

σ = −
[

∂ ln (FK/FL)
∂ ln (K/L)

]−1

.
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Transitional Dynamics in the Continuous Time Solow Model Constant Elasticity of Substitution Example

Constant Elasticity of Substitution Production Function III

As σ → 1, the CES production function converges to the
Cobb-Douglas

Y (t) = AH (t) (AK (t))γ (AL (t))
1−γ (K (t))γ (L (t))1−γ

As σ → ∞, the CES production function becomes linear, i.e.

Y (t) = γAH (t)AK (t)K (t) + (1− γ)AH (t)AL (t) L (t) .

Finally, as σ → 0, the CES production function converges to the
Leontief production function with no substitution between factors,

Y (t) = AH (t)min {γAK (t)K (t) ; (1− γ)AL (t) L (t)} .

Leontief production function: if γAK (t)K (t) ̸= (1− γ)AL (t) L (t),
either capital or labor will be partially “idle”.
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A First Look at Sustained Growth

Section 6

A First Look at Sustained Growth
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A First Look at Sustained Growth Sustained Growth

A First Look at Sustained Growth I

Cobb-Douglas already showed that when α is close to 1, adjustment
to steady-state level can be very slow.

Simplest model of sustained growth essentially takes α = 1 in terms
of the Cobb-Douglas production function above.

Relax Assumptions 1 and 2 and suppose

F [K (t) , L (t) ,A (t)] = AK (t) , (39)

where A > 0 is a constant.

So-called “AK” model, and in its simplest form output does not even
depend on labor.

Results we would like to highlight apply with more general constant
returns to scale production functions, e.g.

F [K (t) , L (t) ,A (t)] = AK (t) + BL (t) , (40)
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A First Look at Sustained Growth Sustained Growth

A First Look at Sustained Growth II

Assume population grows at rate n as before (constant fertility rate
[cfr] equation (32)).

Combining with the production function (39),

k̇ (t)

k (t)
= sA− δ − n.

Therefore, if sA− δ − n > 0, there will be sustained growth in the
capital-labor ratio.

From (39), this implies that there will be sustained growth in output
per capita as well.
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A First Look at Sustained Growth Sustained Growth

A First Look at Sustained Growth III

Proposition (10) Consider the Solow growth model with the production
function (39) F [K (t) , L (t) ,A (t)] = AK (t) and suppose
that sA− δ − n > 0. Then in equilibrium, there is sustained
growth of output per capita at the rate sA− δ − n. In
particular, starting with a capital-labor ratio k (0) > 0, the
economy has

k (t) = exp ((sA− δ − n) t) k (0)

and
y (t) = exp ((sA− δ − n) t)Ak (0) .

Note: no transitional dynamics.
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A First Look at Sustained Growth Sustained Growth

Sustained Growth in Figure56 . Chapter 2 The Solow Growth Model

0 k(0)

k(t)

k(t � 1)
(A � • � n)k(t)

45°

FIGURE 2.10 Sustained growth with the linear AK technology with sA − δ − n > 0.

This proposition not only establishes the possibility of sustained growth but also shows
that when the aggregate production function is given by (2.39), sustained growth is achieved
without transitional dynamics. The economy always grows at a constant rate sA − δ − n,
regardless of the initial level of capital-labor ratio. Figure 2.10 shows this equilibrium dia-
grammatically.

Does the AK model provide an appealing approach to explaining sustained growth? While
its simplicity is a plus, the model has a number of unattractive features. First, it is somewhat
of a knife-edge case, which does not satisfy Assumptions 1 and 2; in particular, it requires
the production function to be ultimately linear in the capital stock. Second and relatedly, this
feature implies that as time goes by the share of national income accruing to capital will increase
toward 1 (if it is not equal to 1 to start with). The next section shows that this tendency does not
seem to be borne out by the data. Finally and most importantly, a variety of evidence suggests
that technological progress is a major (perhaps the most significant) factor in understanding the
process of economic growth. A model of sustained growth without technological progress fails
to capture this essential aspect of economic growth. Motivated by these considerations, we next
turn to the task of introducing technological progress into the baseline Solow growth model.

2.7 Solow Model with Technological Progress

2.7.1 Balanced Growth

The models analyzed so far did not feature technological progress. I now introduce changes
in A(t) to capture improvements in the technological knowhow of the economy. There is
little doubt that today human societies know how to produce many more goods and can
do so more efficiently than in the past. The productive knowledge of human society has

Figure 2.10 – Sustained growth with the linear AK technology with sA− δ − n > 0.
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A First Look at Sustained Growth Sustained Growth

A First Look at Sustained Growth IV

Unattractive features:
1 Knife-edge case, requires the production function to be ultimately

linear in the capital stock.
2 Implies that as time goes by the share of national income accruing to

capital will increase towards 1. Empirically wages > 0, thus this would
be impossible R(t)K (t)/Y (t) → 1.

3 Technological progress seems to be a major (perhaps the most major)
factor in understanding the process of economic growth.
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Solow Model with Technological Progress

Section 7

Solow Model with Technological Progress
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Solow Model with Technological Progress Balanced Growth

Balanced Growth I

Production function F [K (t) , L (t) ,A (t)] is too general.

May not have balanced growth, i.e. a path of the economy consistent
with the Kaldor facts (Kaldor, 1963). K/Y , r , wL/Y and RK/Y
are all (nearly) constants over time.

Kaldor facts:

while output per capita increases, the capital-output ratio, the interest
rate, and the distribution of income between capital and labor remain
roughly constant.

1 ẏ/y > 0 does not decrease, y grows over time
2 k grows over time
3 Rt is nearly constant over time
4 k/y is nearly constant over time
5 wL/Y and RK/Y are nearly constant over time (Cobb-Douglas)
6 ẏ/y differs across countries (but not time).
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Solow Model with Technological Progress Balanced Growth

Historical Factor Shares
2.7 Solow Model with Technological Progress . 57
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FIGURE 2.11 Capital and labor share in the U.S. GDP.

progressed tremendously over the past 200 years, and even more so over the past 1,000 or
10,000 years. This suggests that an attractive way of introducing economic growth in the
framework developed so far is to allow technological progress in the form of changes in A(t).

The key question is how to model the effects of changes in A(t) on the aggregate production
function. The standard approach is to impose discipline on the form of technological progress
(and its impact on the aggregate production function) by requiring that the resulting allocations
be consistent with balanced growth, as defined by the so-called Kaldor facts (Kaldor, 1963).
Kaldor noted that while output per capita increases, the capital-output ratio, the interest rate,
and the distribution of income between capital and labor remain roughly constant. Figure 2.11,
for example, shows the evolution of the shares of capital and labor in the U.S. national income.
Throughout the book, balanced growth refers to an allocation where output grows at a constant
rate and capital-output ratio, the interest rate, and factor shares remain constant. (Clearly, three
of these four features imply the fourth.)

Figure 2.11 shows that, despite fairly large fluctuations, there is no trend in factor shares.
Moreover, a range of evidence suggests that there is no apparent trend in interest rates over
long time horizons (see, e.g., Homer and Sylla, 1991). These facts and the relative constancy
of capital-output ratios until the 1970s make many economists prefer models with balanced
growth to those without. The share of capital in national income and the capital-output ratio
are not exactly constant. For example, since the 1970s both the share of capital in national
income and the capital-output ratio may have increased, depending on how one measures
them. Nevertheless, constant factor shares and a constant capital-output ratio provide a good
approximation to reality and a very useful starting point for our models.

Also for future reference, note that in Figure 2.11 the capital share in national income
is about 1/3, while the labor share is about 2/3. This estimate ignores the share of land;
land is not a major factor of production in modern economies (though this has not been true

Figure 2.11 – Capital and Labor Share in the U.S. GDP.
Ömer Özak Solow Model Macroeconomic Theory II 110 / 142



Solow Model with Technological Progress Balanced Growth

Balanced Growth II

Note capital share in national income is about 1/3, while the labor
share is about 2/3.

Ignoring land, not a major factor of production.

But in poor countries land is a major factor of production.

This pattern often makes economists choose AK 1/3L2/3.

Main advantage from our point of view is that balanced growth is the
same as a steady-state in transformed variables

i.e., we will again have k̇ = 0, but the definition of k will change.

But important to bear in mind that growth has many non-balanced
features.

e.g., the share of different sectors changes systematically.

Technological progress is Neutral if it does not alter the production
function (P/N F/N) in a substantial way.
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Solow Model with Technological Progress Balanced Growth

Types of Neutral Technological Progress I

For some constant returns to scale function F̃ :
Hicks-neutral technological progress:

F̃ [K (t) , L (t) ,A (t)] = A (t) F [K (t) , L (t)] ,

Relabeling of the Isoquants (without any change in their shape) of the
function F̃ [K (t) ,L (t) ,A (t)] in the L-K space.

Solow-neutral technological progress,

F̃ [K (t) , L (t) ,A (t)] = F [A (t)K (t) , L (t)] .

Capital-augmenting progress: Isoquants shifting with technological
progress in a way that they have constant slope at a given labor-output
ratio.

Harrod-neutral technological progress,

F̃ [K (t) , L (t) ,A (t)] = F [K (t) ,A (t) L (t)] .

Increases output as if the economy had more labor: slope of the
Isoquants are constant along rays with constant capital-output ratio.
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Solow Model with Technological Progress Balanced Growth

Isoquants with Neutral Technological Progress2.7 Solow Model with Technological Progress . 59
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FIGURE 2.12 (A) Hicks-neutral, (B) Solow-neutral, and (C) Harrod-neutral shifts in isoquants.

Finally, we can have labor-augmenting or Harrod-neutral technological progress (panel C),
named after Roy Harrod (whom we already encountered in the context of the Harrod-Domar
model):

F̃ (K(t), L(t), A(t)) = F [K(t), A(t)L(t)].

This functional form implies that an increase in technology A(t) increases output as if the
economy had more labor and thus corresponds to an inward shift of the isoquant as if the labor
axis were being shrunk. The approximate form of the shifts in the isoquants are plotted in the
third panel of Figure 2.12, again for a doubling of A(t).

Of course in practice technological change can be a mixture of these, so we could have a
vector-valued index of technology A(t) = (

AH(t), AK(t), AL(t)
)

and a production function
that looks like

F̃ (K(t), L(t), A(t)) = AH(t)F
[
AK(t)K(t), AL(t)L(t)

]
, (2.41)

which nests the CES production function introduced in Example 2.3. Nevertheless, even (2.41)
is a restriction on the form of technological progress, since in general changes in technology,
A(t), could modify the entire production function.

Although all of these forms of technological progress look equally plausible ex ante, we
will next see that balanced growth in the long run is only possible if all technological progress
is labor-augmenting or Harrod-neutral. This result is very surprising and troubling, since there
are no compelling reasons for why technological progress should take this form. I return to a
discussion of why long-run technological change might be Harrod-neutral in Chapter 15.

2.7.3 Uzawa’s Theorem

The discussion above suggests that the key elements of balanced growth are the constancy of
factor shares and the constancy of the capital-output ratio, K(t)/Y (t). The shares of capital
and labor in national income are

αK(t) ≡ R(t)K(t)

Y (t)
and αL(t) ≡ w(t)L(t)

Y (t)
.

By Assumption 1 and Theorem 2.1, αK(t) + αL(t) = 1.

Figure 2.12 – (A) Hicks-neutral, (B) Solow-neutral, and (C) Harrod-neutral shifts in
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Types of Neutral Technological Progress II

Could also have a vector valued index of technology
A (t) = (AH (t) ,AK (t) ,AL (t)) and a production function

F̃ [K (t) , L (t) ,A (t)] = AH (t) F [AK (t)K (t) ,AL (t) L (t)] , (41)

Nests the constant elasticity of substitution production function
introduced in the Example above.

But even (41) is a restriction on the form of technological progress,
A (t) could modify the entire production function.

Balanced growth requires that all technological progress be labor
augmenting or Harrod-neutral.
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Cobb-Douglas

Under Cobb-Douglas production function these forms are equivalent:

Y (t) = AK (t)α L(t)1−α,

= A1/2
[
A1/2K (t)

]α [
A1/2L (t)

]1−α

=
[
A1/αK (t)

]α
L (t)1−α

= K (t)α
[
A1/(1−α)L (t)

]1−α
: Harrod-neutral used

Focus on continuous time models.
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Balanced Growth and Euler’s Theorem

Key elements of balanced growth: constancy of factor shares and of
capital-output ratio, K (t) /Y (t). By factor shares, we mean:

αL (t) ≡
w (t) L (t)

Y (t)
and αK (t) ≡ R (t)K (t)

Y (t)
.

By Assumption 1 and Euler Theorem αL (t) + αK (t) = 1.

All variables should grow at a constant rate.
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Uzawa’s Theorem II

Theorem

(6) (Uzawa I) Suppose L (t) = exp (nt) L (0),

Y (t) = F̃ (K (t) , L (t) , Ã (t)),

K̇ (t) = Y (t)− C (t)− δK (t), and F̃ is CRS in K and L.
Suppose for t ≥ τ, where τ < ∞, Ẏ (t) /Y (t) = gY > 0,
K̇ (t) /K (t) = gK > 0 and Ċ (t) /C (t) = gC > 0. Then,

1 gY = gK = gC ; and

2 for any t ≥ τ, F̃ can be represented as

Y (t) = F (K (t) ,A (t) L (t)) ,

where A (t) ∈ R+, F : R2
+ → R+ is homogeneous of degree 1, and

Ȧ (t) /A (t) = g = gY − n.
Ömer Özak Solow Model Macroeconomic Theory II 117 / 142



Solow Model with Technological Progress Uzawa’s Theorem

Proof of Uzawa’s Theorem I

By hypothesis, for t ≥ τ, Y (t) = exp (gY (t − τ))Y (τ),
K (t) = exp (gK (t − τ))K (τ) and L (t) = exp (n (t − τ)) L (τ) for
some τ < ∞.

Since for t ≥ τ, K̇ (t) = gKK (t) = Y (t)− C (t)− δK (t), we have

(gK + δ)K (t) = Y (t)− C (t) .

Then,

(gK + δ)K (τ) = exp ((gY − gK ) (t − τ))Y (τ)

− exp ((gC − gK ) (t − τ))C (τ)

for all t ≥ τ.
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Proof of Uzawa’s Theorem II

Differentiating with respect to time

0 = (gY − gK ) exp ((gY − gK ) (t − τ))Y (τ)

− (gC − gK ) exp ((gC − gK ) (t − τ))C (τ)

for all t ≥ τ.

This equation can hold for all t ≥ τ
1 if gY = gC and Y (τ) = C (τ), which is not possible, since

gK + δ > 0 and K (τ) > 0.
2 or if gY = gK and C (τ) = 0, which is not possible, since gC > 0 and

C (τ) > 0.
3 or if gY = gK = gC , which must thus be the case.

Therefore, gY = gK = gC as claimed in the first part of the theorem.
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Proof of Uzawa’s Theorem III

Next, the aggregate production function for time τ′ ≥ τ and any
t ≥ τ can be written as

exp
(
−gY

(
t − τ′))Y (t)

= F̃
[
exp

(
−gK

(
t − τ′))K (t) , exp

(
−n

(
t − τ′)) L (t) , Ã (

τ′)] .
Multiplying both sides by exp (gY (t − τ′)) and using the constant
returns to scale property of F , we obtain

Y (t) = F̃
[
e(t−τ′)(gY−gK )K (t) , e(t−τ′)(gY−n)L (t) , Ã

(
τ′)] .

From part 1, gY = gK , therefore

Y (t) = F̃
[
K (t) , exp

((
t − τ′) (gY − n)

)
L (t) , Ã

(
τ′)] .
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Proof of Uzawa’s Theorem IV

Moreover, this equation is true for t ≥ τ regardless of τ′, thus

Y (t) = F [K (t) , exp ((gY − n) t) L (t)] ,

= F [K (t) ,A (t) L (t)] ,

with
Ȧ (t)

A (t)
= gY − n

establishing the second part of the theorem.
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Implications of Uzawa’s Theorem

In words: If the economy is a BGP (Balanced Growth Path) after t ≥ τ,

Corollary (3) Under the assumptions of Uzawa Theorem, after time τ
technological progress can be represented as Harrod-Neutral
(purely labor augmenting).

Remarkable feature: stated and proved without any reference to
equilibrium behavior or market clearing.

Also, contrary to Uzawa’s original theorem, not stated for a balanced
growth path but only for an asymptotic path with constant rates of
output, capital and consumption growth.

But, not as general as it seems;

the theorem gives only one representation.
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Stronger Theorem

Theorem

(7) (Uzawa’s Theorem II) Suppose that all of the hypothesis in Uzawa’s
Theorem are satisfied, so that F̃ : R2

+ ×A → R+ has a representation of
the form F (K (t) ,A (t) L (t)) with A (t) ∈ R+ and
Ȧ (t) /A (t) = g = gY − n. In addition, suppose that factor markets are
competitive and that for all t ≥ τ, the rental rate satisfies R (t) = R∗ (or
equivalently, αK (t) = α∗

K ). Then, denoting the partial derivatives of F̃ and
F with respect to their first two arguments by F̃K , F̃L, FK and FL, we have

F̃K
(
K (t) , L (t) , Ã (t)

)
= FK (K (t) ,A (t) L (t)) and (42)

F̃L
(
K (t) , L (t) , Ã (t)

)
= A (t) FL (K (t) ,A (t) L (t)) .

Moreover, if (42) holds and factor markets are competitive, then
R (t) = R∗ (and αK (t) = α∗

K ) for all t ≥ τ.
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Intuition

Suppose the labor-augmenting representation of the aggregate
production function applies.

Then note that with competitive factor markets, as t ≥ τ,

αK (t) ≡ R (t)K (t)

Y (t)

=
K (t)

Y (t)

∂F [K (t) ,A (t) L (t)]

∂K (t)

= α∗
K ,

Second line uses the definition of the rental rate of capital in a
competitive market

Third line uses that gY = gK and gK = g + n from Uzawa Theorem
and that F exhibits constant returns to scale so its derivative is
homogeneous of degree 0.
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Intuition for the Uzawa’s Theorems

We assumed the economy features capital accumulation in the sense
that gK > 0.

From the aggregate resource constraint, this is only possible if output
and capital grow at the same rate.

Either this growth rate is equal to n and there is no technological
change (i.e., proposition applies with g = 0), or the economy exhibits
growth of per capita income and capital-labor ratio.

The latter case creates an asymmetry between capital and labor:
capital is accumulating faster than labor.

Constancy of growth requires technological change to make up for
this asymmetry

But this intuition does not provide a reason for why technology
should take labor-augmenting (Harrod-neutral) form.

But if technology did not take this form, an asymptotic path with
constant growth rates would not be possible.
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Interpretation

Distressing result:

Balanced growth is only possible under a very stringent assumption.
Provides no reason why technological change should take this form.

But when technology is endogenous, intuition above also works to
make technology endogenously more labor-augmenting than capital
augmenting.

Only requires labor augmenting asymptotically, i.e., along the
balanced growth path.

This is the pattern that certain classes of endogenous-technology
models will generate.
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Implications for Modeling of Growth

Does not require Y (t) = F [K (t) ,A (t) L (t)], but only that it has a
representation of the form Y (t) = F [K (t) ,A (t) L (t)].

Allows one important exception. If (Cobb-Douglas P/N F/N),

Y (t) = [AK (t)K (t)]α [AL(t)L(t)]
1−α ,

then both AK (t) and AL (t) could grow asymptotically, while
maintaining balanced growth.

Because we can define A (t) = [AK (t)]α/(1−α) AL (t) and the
production function can be represented as

Y (t) = [K (t)]α [A(t)L(t)]1−α .

Differences between labor-augmenting and capital-augmenting (and
other forms) of technological progress matter when the elasticity of
substitution between capital and labor is not equal to 1.
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Further Intuition

Suppose the production function takes the special form
F [AK (t)K (t) ,AL (t) L (t)].

The stronger theorem implies that factor shares will be constant.

Given constant returns to scale, this can only be the case when
AK (t)K (t) and AL (t) L (t) grow at the same rate.

The fact that the capital-output ratio is constant in steady state (or
the fact that capital accumulates) implies that K (t) must grow at
the same rate as AL (t) L (t).

Thus balanced growth can only be possible if AK (t) is asymptotically
constant.
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The Solow Growth Model with Technological Progress:
Continuous Time I

From Uzawa Theorem, production function must admit representation
of the form

Y (t) = F [K (t) ,A (t) L (t)] ,

Moreover, suppose
Ȧ (t)

A (t)
= g , (43)

L̇ (t)

L (t)
= n.

Again using the constant saving rate

K̇ (t) = sF [K (t) ,A (t) L (t)]− δK (t) . (44)
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The Solow Growth Model with Technological Progress:
Continuous Time II

Now define k (t) as the effective capital-labor ratio, i.e.,

k (t) ≡ K (t)

A (t) L (t)
. (45)

Slight but useful abuse of notation.

Differentiating this expression with respect to time,

k̇ (t)

k (t)
=

K̇ (t)

K (t)
− g − n. (46)

Output per unit of effective labor can be written as

ŷ (t) ≡ Y (t)

A (t) L (t)
= F

[
K (t)

A (t) L (t)
, 1

]
≡ f (k (t)) .
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The Solow Growth Model with Technological Progress:
Continuous Time III

Income per capita is y (t) ≡ Y (t) /L (t), i.e.,

y (t) = A (t) ŷ (t) (47)

= A (t) f (k (t)) .

Clearly if ŷ (t) is constant, income per capita, y (t), will grow over
time, since A (t) is growing.

Thus should not look for “steady states” where income per capita is
constant, but for balanced growth paths, where income per capita
grows at a constant rate.

Some transformed variables such as ŷ (t) or k (t) in (46) remain
constant.

Thus balanced growth paths can be thought of as steady states of a
transformed model.
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The Solow Growth Model with Technological Progress:
Continuous Time IV

Hence use the terms “steady state” and balanced growth path
interchangeably.

Substituting for K̇ (t) from (44) into (46):

k̇ (t)

k (t)
=

sF [K (t) ,A (t) L (t)]

K (t)
− (δ + g + n) .

Now using (45),

k̇ (t)

k (t)
=

sf (k (t))

k (t)
− (δ + g + n) , (48)

Only difference is the presence of g : k is no longer the capital-labor
ratio but the effective capital-labor ratio.
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The Solow Growth Model with Technological Progress:
Continuous Time V

Proposition (11) Consider the basic Solow growth model in continuous
time, with Harrod-neutral technological progress at the rate
g and population growth at the rate n. Suppose that
Assumptions 1 and 2 hold, and define the effective
capital-labor ratio as in (45). Then there exists a unique
steady state (balanced growth path) equilibrium where the
effective capital-labor ratio is equal to k∗ ∈ (0,∞) and is
given by

f (k∗)

k∗
=

δ + g + n

s
. (49)

Per capita output and consumption grow at the rate g .
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The Solow Growth Model with Technological Progress:
Continuous Time VI

Equation (49), emphasizes that now total savings, sf (k), are used for
replenishing the capital stock for three distinct reasons:

1 depreciation at the rate δ.
2 population growth at the rate n, which reduces capital per worker.
3 Harrod-neutral technological progress at the rate g .

Now replenishment of effective capital-labor ratio requires
investments to be equal to (δ + g + n) k.
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Solow Growth w/ Technological Progress: Continuous
Time VII

Proposition (12) Suppose Assumptions 1 and 2 hold and let A (0) be the
initial level of technology. Denote the balanced growth path
level of effective capital-labor ratio by k∗ (A (0) , s, δ, n) and
the level of output per capita by y ∗ (A (0) , s, δ, n, t). Then

∂k∗ (A (0) , s, δ, n)

∂A (0)
= 0,

∂k∗ (A (0) , s, δ, n)

∂s
> 0,

∂k∗ (A (0) , s, δ, n)

∂n
< 0 and

∂k∗ (A (0) , s, δ, n)

∂δ
< 0,

and also for each t

∂y ∗ (A (0) , s, δ, n, t)

∂A (0)
> 0,

∂y ∗ (A (0) , s, δ, n, t)

∂s
> 0,

∂y ∗ (A (0) , s, δ, n, t)

∂n
< 0 and

∂y ∗ (A (0) , s, δ, n, t)

∂δ
< 0.
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The Solow Growth Model with Technological Progress:
Continuous Time VIII

Proposition (13) Suppose that Assumptions 1 and 2 hold, then the Solow
growth model with Harrod-neutral technological progress and
population growth in continuous time is asymptotically
stable, i.e., starting from any k (0) > 0, the effective
capital-labor ratio converges to a steady-state value k∗

(k (t) → k∗).

Now model generates growth in output per capita, but entirely
exogenously.
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Section 8

Comparative Dynamics
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Comparative Dynamics I

Comparative dynamics: dynamic response of an economy to a change
in its parameters or to shocks.

Different from comparative statics in Propositions above in that we
are interested in the entire path of adjustment of the economy
following the shock or changing parameter.

For brevity we will focus on the continuous time economy.

Recall
k̇ (t) /k (t) = sf (k (t)) /k (t)− (δ + g + n)
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Comparative Dynamics in Figure
68 . Chapter 2 The Solow Growth Model

0
k**

k(t)

k(t)
·

k(t)

k*

� (• � g � n)s�
f(k(t))

k(t)

� (•� g � n)s
f(k(t))

k(t)

FIGURE 2.13 Dynamics following an increase in the saving rate from s to s′. The solid arrows show
the dynamics for the initial steady state, while the dashed arrows show the dynamics for the new steady
state.

comparative dynamics following a one-time, unanticipated, permanent decrease in δ or n are
identical.

The same diagrammatic analysis can be used for studying the effect of an unanticipated but
transitory change in parameters. For example, imagine that s changes in an unanticipated
manner at t = t ′, but this change will be reversed and the saving rate will return back to its
original value at some known future date t ′′ > t ′. In this case, starting at t ′, the economy follows
the dashed arrows until t ′. After t ′′, the original steady state of the differential equation applies
and together with this, the solid arrows above the horizontal axis become effective. Thus from
t ′′ onward, the economy gradually returns back to its original balanced growth equilibrium, k∗.
We will see that similar comparative dynamics can be carried out in the neoclassical growth
model as well, but the response of the economy to some of these changes will be more complex.

2.9 Taking Stock

What have we learned from the Solow model? At some level, a lot. We now have a simple
and tractable framework that allows us to study capital accumulation and the implications of
technological progress. As we will see in the next chapter, this framework is already quite
useful in helping us think about the data.

However, at another level, we have learned relatively little. The questions that Chapter 1
posed are related to why some countries are rich while others are poor, why some countries
grow while others stagnate, and why the world economy embarked upon the process of steady
growth over the past few centuries. The Solow model shows us that if there is no technological

Figure 2.13 – Dynamics following an increase in the savings rate from s to s ′ . The solid arrows show the dynamics for the
initial steady state, while the dashed arrows show the dynamics for the new steady state.
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Comparative Dynamics II

One-time, unanticipated, permanent increase in the saving rate from
s to s ′.

Shifts curve to the right as shown by the dotted line, with a new
intersection with the horizontal axis, k∗∗.
Arrows on the horizontal axis show how the effective capital-labor ratio
adjusts gradually to k∗∗.
Immediately, the capital stock remains unchanged (since it is a state
variable).
After this point, it follows the dashed arrows on the horizontal axis.

s changes in unanticipated manner at t = t ′ , but will be reversed
back to its original value at some known future date t = t ′′ > t ′.

Starting at t ′, the economy follows the rightwards arrows until t ′.
After t ′′, the original steady state of the differential equation applies
and leftwards arrows become effective.
From t ′′ onwards, economy gradually returns back to its original
balanced growth equilibrium, k∗.
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Section 9

Conclusions
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Conclusions

Conclusions

Simple and tractable framework, which allows us to discuss capital
accumulation and the implications of technological progress.

Solow model shows us that if there is no technological progress, and
as long as we are not in the AK world, there will be no sustained
growth.

Generate per capita output growth, but only exogenously:
technological progress is a black-box.

Capital accumulation: determined by the saving rate, the depreciation
rate and the rate of population growth. All are exogenous.

Need to dig deeper and understand what lies in these black boxes.
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